VWT-272: FUNDAMENTALS OF WINE CHEMISTRY & MICROBIOLOGY

Effective Term Fall 2025

CC Approval

02/07/2025

AS Approval 02/13/2025

BOT Approval 02/20/2025

COCI Approval 05/15/2025

SECTION A - Course Data Elements

CB04 Credit Status

Credit - Degree Applicable

Discipline

Minimum Qualifications

Agricultural Production (Any Degree and Professional Experience)

Subject Code

VWT - Viticulture and Winery Technology Course Number 272

Department Viticulture and Winery Technology (VWT)

Division

Career Education and Workforce Development (CEWD)

Full Course Title

Fundamentals of Wine Chemistry & Microbiology

Short Title Wine Chemistry & Microbiology

CB03 TOP Code 0104.00 - *Viticulture, Enology, and Wine Business

CB08 Basic Skills Status NBS - Not Basic Skills

CB09 SAM Code C - Clearly Occupational

Rationale This is an update to a long standing Viticulture and Winery technology course. And/Or

SECTION B - Course Description

Catalog Course Description

Chemistry and microbiology of winemaking, this course includes: the use of enzymes and yeasts; fermentation management; wine micro-organisms; phenols; aging; flavor development, and wine stability.

SECTION C - Conditions on Enrollment

Open Entry/Open Exit

No

Repeatability Not Repeatable

Grading Options Letter Grade or Pass/No Pass

Allow Audit Yes

Requisites

SECTION D - Course Standards

Is this course variable unit? No

Units 3.00

Lecture Hours 54.00

Outside of Class Hours 108

Total Contact Hours 54

Total Student Hours 162

Distance Education Approval

Is this course offered through Distance Education? Yes

Online Delivery Methods

DE Modalities	Permanent or Emergency Only?
Entirely Online	Emergency Only
Hybrid	Permanent

SECTION E - Course Content

Student Learning Outcomes

	Upon satisfactory completion of the course, students will be able to:	
1.	Explain basic principles of wine chemistry and microbiology.	
2.	Demonstrate skills required in the workplace.	

Course Objectives

	Upon satisfactory completion of the course, students will be able to:		
1.	Explain the fermentation of grape juice into wine.		
2.	Plan and implement a successful alcoholic fermentation.		
3.	Define the differences between red and white wine fermentations with a focus on phenolics and stability.		
4.	Describe the secondary malolactic fermentation and its effect on wine style.		
5.	Assess the effect of different bacteria and molds on wine style and quality.		
6.	Evaluate the effect of different yeasts on wine style.		
7.	Demonstrate knowledge of the nutritional needs of yeasts.		
8.	Explain the use of Botrytis bunch rot in winemaking.		
9.	Explain the role of yeast autolysis in 'Methode Champenoise' winemaking.		
10.	Create sanitation plans to prevent undesirable effects caused by microorganisms without increasing the risks of cork taint.		
11.	Use basic microbiological techniques to view and manage yeast populations.		
12.	Define key phenolic and other wine quality components such as tannin, anthocyanin, flavonols, isoprenoids etc.		
13.	Estimate the effect of oxygen and lees on wine style and quality.		
14.	Implement plans to create high quality wine styles with different amounts of phenolics.		
15.	Explain the relationship of anthocyanin, tannins and flavonols in wine color and stability.		
16.	Discuss the importance of pH and titratable acidity in wine color and stability.		
17.	Describe the use of enzymes in certain winemaking styles.		
18.	Create a plan to secure long term wine stability.		

Course Content

- 1. Fermentation processes and dynamics
- 2. Differences between red and white wine fermentation dynamics
- 3. Yeasts, bacteria and molds in musts and wines
- 4. Microbiological practices in the winery
- 5. Indigenous yeasts
- 6. Differences among commercially available yeasts
- 7. Nutrient requirements of yeasts
- 8. Preventing sluggish and stuck fermentations
- 9. Malolactic fermentation dynamics
- 10. Uses of "Botrytis cinerea" in winemaking
- 11. Role of yeast autolysis in sparkling wines
- 12. Causes and control undesirable microorganisms in wine
- 13. Proper sanitation techniques
- 14. Titratable acidity and pH
- 15. The role of TA and pH in red wine color stability
- 16. The chemistry of cork taint and associated risk factors
- 17. Oxygen and lees management in wines
- 18. Tannins, anthocyanins and flavonols
- 19. Phenolics and wine quality
- 20. Red wine color
- 21. Wine flavors
- 22. Smoke taint components
- 23. Osmosis and filtration chemistry
- 24. The relationship of yeasts and alcohol
- 25. Long term wine stability

Methods of Instruction

Methods of Instruction

Types	Examples of learning activities
Discussion	Discussion on the relationship of yeast nutrition and alcohol levels to stuck fermentations.
Lecture	Lecture on the polymerization of tannins with anthocyanins and flavonols in wine.

Instructor-Initiated Online Contact Types

Announcements/Bulletin Boards Chat Rooms Discussion Boards E-mail Communication Telephone Conversations Video or Teleconferencing

Student-Initiated Online Contact Types

Chat Rooms Discussions Group Work

Course design is accessible

Yes

Methods of Evaluation

Methods of Evaluation

Туреѕ	Examples of classroom assessments
Exams/Tests	A midterm examination consisting of true/false, multiple choice and essay questions. A final examination consisting of true/false, multiple choice and essay questions.

Assignments

Reading Assignments

Assigned reading from the textbook (example: "Fermentation" chapter from Wine Science). Assigned reading from the textbook (example: "Post fermentation Treatments and Related Topics" from Wine Science).

Writing Assignments

Writing:

Essay or short paper (example: an essay question on the midterm examination in which the student describes the role of yeast during primary alcohol fermentation).

Problem Solving:

Essay or short paper (example: an essay question on the final examination in which the student selects from alternative management methods for the control of spoilage yeasts and justifies the choice for a real or a hypothetical winery).

Other Assignments

Identification of healthy vs stressed yeast populations using microscopy, and fermentation chemistry.

SECTION F - Textbooks and Instructional Materials

Material Type

Textbook

Author

Andrew Waterhouse, Gavin Sacks and David Jeffrey

Title

Understanding Wine Chemistry

Edition/Version

2nd

Publisher

Wiley

Year

2024

Rationale

Appropriate to subject matter

Material Type

Textbook

Author

Ronald S. Jackson

Title

Wine Science

Edition/Version 5th

Publisher Academic Press

.....

Year 2020

Rationale

Appropriate to subject matter

Course Codes (Admin Only)

ASSIST Update No

CB00 State ID CCC000147453

CB10 Cooperative Work Experience Status N - Is Not Part of a Cooperative Work Experience Education Program

CB11 Course Classification Status

Y - Credit Course

CB13 Special Class Status N - The Course is Not an Approved Special Class

CB23 Funding Agency Category Y - Not Applicable (Funding Not Used)

CB24 Program Course Status Program Applicable

Allow Pass/No Pass Yes

Only Pass/No Pass No