RESP-120: RESPIRATORY CARE THEORY I

Effective Term Fall 2025

CC Approval 02/07/2025

AS Approval 02/13/2025

BOT Approval 02/20/2025

COCI Approval 04/30/2025

SECTION A - Course Data Elements

CB04 Credit Status

Credit - Degree Applicable

Discipline

Minimum Qualifications

Respiratory Technologies (Any Degree and Professional Experience)

Subject Code RESP - Respiratory Care Course Number 120

Department Respiratory Therapy (RESP)

Division Health Occupations (HEOC)

Full Course Title Respiratory Care Theory I

Short Title Respiratory Care Theory I

CB03 TOP Code 1210.00 - *Respiratory Care/Therapy

CB08 Basic Skills Status NBS - Not Basic Skills

CB09 SAM Code C - Clearly Occupational

Rationale Common course numbering course update.

SECTION B - Course Description

Catalog Course Description

Students will receive instruction in the theoretical foundations of respiratory care. The course will cover the anatomy and physiology of the respiratory system, the mechanics of breathing, and acid-base balance.

And/Or

SECTION C - Conditions on Enrollment

Open Entry/Open Exit

No

Repeatability Not Repeatable

Grading Options

Letter Grade Only

Allow Audit

Yes

Requisites

Prerequisite(s)

Completion of CHEM-110, BIOL-218, BIOL-219, BIOL-220, and MATH-106 or STAT-C1000 with a minimum grade of C.

Advisory Prerequisite(s)

Completion of HEOC-171 and PHYS-110 with a minimum grade of C.

Requisite Justification

Requisite Description Course Not in a Sequence

Subject CHEM Course #

Level of Scrutiny

Content Review

Upon entering this course, students should be able to:

Unit 1: Measurement and Calculations. Metric-metric conversions; metric-English conversions; using units; the dimensional analysis method; the proportion method; density; temperature conversions (Fahrenheit, Celsius, Kelvin); Charles' and Boyle's Gas Laws; the barometer. Exponential notation.

Unit 2: Atoms and Bonding. The atom and its parts; isotopes; atomic number, mass number, atomic mass; energy and the electron shells; the

Periodic Table; Elements, compounds, mixtures; solutions; molecules and formula units; atomic, molecular and formula masses. Unit 3: Redox, Chemical Equations, and Solutions. Electronegativity; oxidation and reduction; oxidizing and reducing agents. Hydrogen bonding; dissolving; salts, strong and weak bases, strong and weak acids; hydronium ion; the modern definition of a base. Types of chemical equations. Predicting what the products will be. Writing complete, balanced chemical equations.

Unit 4: The Mole. The mole defined-molar number, molar mass, molar volume of a gas and of a solid or liquid. The mole and gas density. Concentrations of solutions; molarity and normality. pH-what it is and what influences it.

Lab: Basic safety rules and techniques. A variety of experiments including the making and testing of gases.

Requisite Description

Course Not in a Sequence

Subject BIOL Course # 218

Level of Scrutiny Content Review

Upon entering this course, students should be able to:

Upon completion of this course, the student will be able to:

1. Identify microscopic and macroscopic structures of human anatomy at several levels of organization, including the organelle, cellular, tissue, organ, and organ system levels.

2. Categorize anatomical structures according to their level of organization and in relation to larger physiological systems.

3. Locate gross anatomical structures on a model of the human body and on a human subject, where appropriate.

4. Relate anatomical structures to function by describing normal functions for each structure.

Requisite Description

Course Not in a Sequence

Subject

BIOL Course # 219

Level of Scrutiny

Content Review

Upon entering this course, students should be able to:

Upon completion of this course, the student will be able to:

1. Identify microscopic and macroscopic structures of human anatomy at several levels of organization, including the organelle, cellular, tissue, organ, and organ system levels.

2. Categorize anatomical structures according to their level of organization and in relation to larger physiological systems.

3. Locate gross anatomical structures on a model of the human body and on a human subject, where appropriate.

4. Relate anatomical structures to function by describing normal functions for each structure.

Requisite Description

Course Not in a Sequence

Subject BIOL Course

220

Level of Scrutiny

Content Review

Upon entering this course, students should be able to:

Upon completion of this course, the student will be able to:

1. Identify microscopic and macroscopic structures of human anatomy at several levels of organization, including the organelle, cellular, tissue, organ, and organ system levels.

2. Categorize anatomical structures according to their level of organization and in relation to larger physiological systems.

3. Locate gross anatomical structures on a model of the human body and on a human subject, where appropriate.

4. Relate anatomical structures to function by describing normal functions for each structure.

Requisite Description

Course Not in a Sequence

Subject MATH Course # 106

Level of Scrutiny Content Review

Upon entering this course, students should be able to:

Math requirement to ensure safety of drug calculations. Other transferable math with a minimum grade of C

Requisite Description

Course Not in a Sequence

Subject STAT Course # C1000

Level of Scrutiny Content Review

Upon entering this course, students should be able to:

Math requirement to ensure safety of drug calculations. Other transferable math with a minimum grade of C

SECTION D - Course Standards

Is this course variable unit? No

Units 6.00

Lecture Hours 108.00

Outside of Class Hours 216

Total Contact Hours 108

Total Student Hours 324

Distance Education Approval

Is this course offered through Distance Education? No

SECTION E - Course Content

Student Learning Outcomes

	Upon satisfactory completion of the course, students will be able to:	
1.	Analyze and describe cardiopulmonary structures, lung mechanics and gas exchange.	
Course (Objectives	
	Upon satisfactory completion of the course, students will be able to:	
1.	Describe the gas exchange unit of the lung.	
2.	Discuss the indications and hazards of oxygen therapy.	
3.	Calculate blood oxygen content given the necessary data.	
4.	Explain how oxygen and carbon dioxide are transported in the blood.	
5.	Describe how pulmonary diseases affect lung volumes and capacities.	
6.	Perform and interpret basic pulmonary function tests.	
7.	Explain the ways that oxygen and carbon dioxide diffuse across the alveolar-capillary membrane.	
8.	Perform calculations using Boyle's, Charles's, and Gay-Lussac's laws.	

- 9. Discuss the pressure changes that occur during inspiration and expiration.
- 10. Analyze arterial blood gas values, including oxygenation and acid-base status.
- 11. Evaluate respiratory and metabolic acid-base disturbances.

Course Content

- 1. Anatomy of the Respiratory System
 - a. Common causes of respiratory system derangements
 - b. Implications for respiratory care techniques
- 2. Oxygen Therapy
 - a. Indications for oxygen therapy
 - b. Hazards of oxygen therapy
- 3. Oxygen Transport
 - a. Oxygen dissolved in plasma
 - b. Oxygen bound to hemoglobin
 - c. Oxy-hemoglobin dissociation curve
 - d. Oxygen content calculation
- 4. Carbon Dioxide Transport
 - a. Six ways in which carbon dioxide is carried in the blood
 - b. Bohr and Haldane effects
- 5. Lung Volumes and Capacities
 - a. Four lung volumes and four lung capacities
 - b. Pulmonary diseases' effects on lung volumes and capacities
- 6. Introduction to Pulmonary Function Testing
 - a. Basic pulmonary spirometry
 - b. Interpretation of basic pulmonary function results
- 7. Behavior and Diffusion of Gases
 - a. Diffusion of gases across the alveolar-capillary membrane
 - b. Gas law calculations
- 8. Mechanics of Breathing
 - a. Pressure changes during inspiration and expiration
 - b. Effect of common pulmonary diseases on mechanics of breathing
- 9. Chemical Concepts/Acid Base
 - a. Henderson-Hasselbalch equation
 - b. Interpretation of arterial blood gases

Methods of Instruction

Methods of Instruction

Туреѕ	Examples of learning activities
Activity	Students collaborate to solve simulated patient problems.
Lecture	Instructor relays information on a given subject.
Observation and Demonstration	Instructor displays respiratory care equipment and techniques.

Methods of Evaluation

.

Methods of Evaluation			
Types	Examples of classroom assessments		
Exams/Tests			
Quizzes			

Other

 Completion of computer programs, internet research assignments, and other homework assignments (10% of final grade)
Quizzes
Example of a quiz question: Given the required data, calculate the oxygen content of the blood in grams/deciliter. Determine whether or not it falls within the normal range.
Midterm exam to include both multiple choice and essay questions.
Example of a mid-term question: As the patient/s lung compliance improved, would the pressure needed to ventilate them change? Explain.
Final exam, to include both multiple choice and essay questions.

Quizzes, midterm, and final exams constitute 90% of final grade.

Assignments

Reading Assignments

Assigned readings from textbooks and medical journals.

Examples:

Read pages 236-244 in Egan's Fundamentals of Respiratory Care on the ways that oxygen is transported in the blood.
Read pages 391-425 in Egan's Fundamentals of Respiratory Care covering the eight lung volumes and capacities and basic pulmonary function testing.

Writing Assignments

Examples of homework/class work assignments:

1. Perform spirometry on a partner and have your partner perform spirometry on you. Submit the results with interpretations.

2. Complete the worksheet on arterial blood gas interpretations. Determine whether each of the ten patients has a problem with oxygenation, ventilation, or both, and develop a care plan.

SECTION F - Textbooks and Instructional Materials

Material Type

Textbook

Author

Des Jardins

Title

Cardiopulmonary Anatomy and Physiology

Edition/Version

6th

Publisher

Delmar

Year

2013

Material Type

Textbook

Author

Kacmarek, et al.

Title Egan's Fundamentals of Respiratory Care

Edition/Version

11th

Publisher Mosby Elsevier

Year

2016

Material Type

Textbook

Author

Wilkins, Robert

Title

Mosby's Respiratory Care Online for Egan's Fundamentals of Respiratory Care

Edition/Version

2nd

Publisher

Mosby Elsevier

Year

2012

Course Codes (Admin Only)

ASSIST Update

No

CB00 State ID CCC000310650

CB10 Cooperative Work Experience Status N - Is Not Part of a Cooperative Work Experience Education Program

CB11 Course Classification Status

Y - Credit Course

CB13 Special Class Status N - The Course is Not an Approved Special Class

CB23 Funding Agency Category Y - Not Applicable (Funding Not Used)

CB24 Program Course Status Program Applicable

Allow Pass/No Pass No

Only Pass/No Pass No