# **ASTR-110: DESCRIPTIVE ASTRONOMY**

# Phys/Astro

#### Course

- ASTR-110: Descriptive Astronomy
- PHYS-110: Descriptive Physics

## Effective Term

Fall 2025

# **SECTION A - Course Data Elements**

# **CB04 Credit Status**

Credit - Degree Applicable

# Discipline

## **Minimum Qualifications**

Physics/Astronomy (Master's Degree)

Subject Code ASTR - Astronomy Course Number

110

**Department** Astronomy (ASTR)

**Division** Science and Engineering (SE)

Full Course Title Descriptive Astronomy

Short Title Descriptive Astronomy

CB03 TOP Code 1911.00 - Astronomy

CB08 Basic Skills Status NBS - Not Basic Skills

**CB09 SAM Code** E - Non-Occupational

Rationale update textbook

# **SECTION B - Course Description**

# **Catalog Course Description**

An introductory general education course on the formation, properties, evolution, and fates of celestial objects--from galaxies to planets to black holes.

# **SECTION C - Conditions on Enrollment**

**Open Entry/Open Exit** No

Repeatability Not Repeatable And/Or

# **Grading Options**

Letter Grade or Pass/No Pass

# Allow Audit

Yes

# **Requisites**

# **SECTION D - Course Standards**

Is this course variable unit? No

Units

3.00

**Lecture Hours** 54

**Outside of Class Hours** 108

**Total Contact Hours** 54

**Total Student Hours** 162

# **Distance Education Approval**

Is this course offered through Distance Education? Yes

## **Online Delivery Methods**

| DE Modalities               | Permanent or Emergency Only? |
|-----------------------------|------------------------------|
| Entirely Online             | Permanent                    |
| Hybrid                      | Permanent                    |
| Online with Proctored Exams | Permanent                    |

# **SECTION E - Course Content**

## Student Learning Outcomes

|    | Upon satisfactory completion of the course, students will be able to:                                                                   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Demonstrate and be able to explain the principles of the study of celestial objects. (How we know what we know.)                        |
| 2. | Demonstrate knowledge of the characteristics of the different kinds of celestial objects.                                               |
| 3. | Describe conceptual models related to the formation, evolution and fates of galaxies, stars, planets, comets, meteors, and black holes. |

## **Course Objectives**

|    | Upon satisfactory completion of the course, students will be able to:                                                                                                                                                       |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Describe the principal characteristics of each type of celestial object; asteroids, black holes, comets, galaxies, etc.                                                                                                     |
| 2. | Describe the stages of formation, evolution, and death of each type of celestial object, including the stages of stellar<br>death, how stars produce energy, where comets come from and go to, etc.                         |
| 3. | Demonstrate an improved comprehension of the magnitude of the speed of light and the immensity of interstellar and intergalactic distances; apply this comprehension to questions of future space travel and communication. |
| 4. | Describe the current theories concerning the beginning, history, and possible future of the universe; give key evidence for these theories.                                                                                 |
| 5. | Describe the major methods for determining the distances to stars and galaxies; demonstrate a working knowledge of the H-R diagram and spectroscopic parallax (using intrinsic variables).                                  |

6. Find (especially in a library) good (current, readable, reliable) sources of astronomical information (of the type presented in this class) and be able to read this material with understanding.

#### **Course Content**

- 1. How we know what we know? the nature of light and other electromagnetic waves. Instruments: reflecting, refracting (inc. binoculars), combination telescopes; radio telescopes; high energy (UV, X, Gamma) detectors.
  - a. image formation, light-gathering-power, magnification, resolving power, atmospheric distortions and absorptions.
  - b. the near future multimirror telescopes, multiple radio telescopes, space telescopes, as well as southern hemisphere instruments.
  - c. spectral analysis; the Doppler Effect.
- The vastness of space. The speed of light; Einstein and Relativity. Measuring distances using the speed of light. How far to anyplace? The distances to stars, across the galaxy, to distant galaxies, to quasars. The likely future of interstellar travel and communication.
- The origin/formation, evolution, characteristics, and likely fate of solar system objects planets (including earth), satellites, asteroids, meteors, comets, and the sun. The requirements for the formation, evolution of life; is there life in space? The sun's visible features - spots, flares, prominences.
- 4. The origin/formation, evolution, characteristics, and likely fate of stars, small groups (binaries), open and globular clusters, nebulae, and galaxies (incl. quasars). How stars produce energy. The creation of elements. Stellar evolution, including protostars, main sequence, red giants, intrinsic variables, white dwarfs. Star death: supernovae and their remnants, planetary nebulae, neutron stars, pulsars, black dwarfs and black holes.
  - a. Determining the distances to stars and galaxies: intrinsic variables, the H-R diagram, spectroscopic and heliocentric parallax, red shift. Star motion.
- 5. Cosmology. The history and likely future of the universe. The Big Bang, expanding universe, background radiation. Are there other universes?
- 6. Misc. Sources of current information (well written) about astronomy; magazines and books; use of library.

# **Methods of Instruction**

## Methods of Instruction

| Туреѕ      | Examples of learning activities |
|------------|---------------------------------|
| Lecture    | In class lecture                |
| Discussion | Discussion of class topics      |

## Instructor-Initiated Online Contact Types

Announcements/Bulletin Boards Chat Rooms Discussion Boards E-mail Communication Telephone Conversations Video or Teleconferencing

#### Student-Initiated Online Contact Types

Chat Rooms Discussions Group Work

#### Course design is accessible Yes

# **Methods of Evaluation**

#### **Methods of Evaluation**

| Туреѕ       | Examples of classroom assessments                                                                          |
|-------------|------------------------------------------------------------------------------------------------------------|
| Exams/Tests | Exams on course material may include for example essay, short answer, multiple choice, matching questions. |
| Quizzes     | Quizzes on course material                                                                                 |
| Projects    | Individual or group projects                                                                               |
| Homework    | Homework problems from book or other questions about the class content                                     |

# Assignments

# **Reading Assignments**

Reading assignments from the textbook, published articles, library books, or reputable online sources.

#### Writing Assignments

Examples of writing assignments may include research papers, discussion posts, personal reactions, note taking, and short answer explanations.

# **SECTION F - Textbooks and Instructional Materials**

# **Material Type**

Textbook

## Author

Micheal A. Seeds, Dana Backman

#### Title

Foundations of Astronomy

## **Edition/Version**

14th

# Publisher

Cengage

**Year** 2019

# ISBN #

9780357031612

# Material Type

Textbook

# Author

**OpenStax College** 

# Title

Astronomy

# Edition/Version 2e

Publisher

OpenStax

**Year** 2024

# ISBN # ISBN-13: 978-1-951693-50-3

# Course Codes (Admin Only)

ASSIST Update No CB00 State ID CCC000234838

**CB10 Cooperative Work Experience Status** N - Is Not Part of a Cooperative Work Experience Education Program

# **CB11 Course Classification Status**

Y - Credit Course

**CB13 Special Class Status** N - The Course is Not an Approved Special Class

**CB23 Funding Agency Category** Y - Not Applicable (Funding Not Used)

**CB24 Program Course Status** Program Applicable

Allow Pass/No Pass Yes

**Only Pass/No Pass** No