• The **integument** is the largest system of the body

 – 16% of body weight

 – 1.5 to 2 m² in area

 – The integument is made up of two parts:

 • **Cutaneous membrane** (skin)

 • **Accessory structures**
The cutaneous membrane has two components:

- **Outer epidermis:**
 - Superficial epithelium (epithelial tissues)

- **Inner dermis:**
 - Connective tissues
• Accessory Structures
 – Originate in the dermis
 – Extend through the epidermis to the skin surface:
 • Hair
 • Nails
 • Multicellular exocrine glands
Introduction to the Integumentary System

• **Subcutaneous Layer** (Superficial Fascia or Hypodermis)
 – Loose connective tissue
 – Below the dermis
 – Location of hypodermic injections
Figure 5-1

General Structure of the Integumentary System

- Epidermis
- Dermis
- Subcutaneous layer (hypodermis)
- Hair shaft
- Pore of sweat gland duct
- Epidermal ridge
- Dermal papilla
- Sebaceous gland
- Arrector pili muscle
- Sweat gland duct
- Touch and pressure receptors
- Hair follicle
- Artery
- Vein
- Sweat gland
- Nerve fibers
- Fat

Copyright © 2010 Pearson Education, Inc.
Introduction to the Integumentary System

• Functions of Skin
 – **Protects** underlying tissues and organs
 – **Maintains** body temperature (insulation and evaporation)
 – **Synthesizes** vitamin D_3
 – **Stores** lipids
 – **Detects** touch, pressure, pain, and temperature
 – **Excretes** salts, water, and organic wastes (glands)
5-1 The epidermis is composed of strata (layers) with various functions
• Epidermis is

 – Avascular stratified squamous epithelium:
 • Nutrients and oxygen diffuse from capillaries in the dermis
Epidermis

• Thin Skin
 – Covers most of the body
 – Has four layers of keratinocytes

• Thick Skin
 – Covers the palms of the hands and soles of the feet
 – Has five layers of keratinocytes
Structure of the Epidermis

Figure 5-2

- Surface
- Stratum corneum
- Stratum lucidum
- Stratum granulosum
- Stratum spinosum
- Stratum germinativum
- Basement membrane
- Epidermis
- Dermis

LM ×150
Epidermis

• Structures of the Epidermis
 – The five **strata** of keratinocytes in thick skin
 – From basal lamina to free surface:
 • Stratum germinativum
 • Stratum spinosum
 • Stratum granulosum
 • Stratum lucidum
 • Stratum corneum
Stratum Germinativum

• The “germinative layer”
 – Has many germinative (stem) cells or **basal cells**
 – Is attached to basal lamina by hemidesmosomes
 – Forms a strong bond between epidermis and dermis
 – Forms **epidermal ridges** (e.g., fingerprints)
 – **Dermal papillae** (tiny mounds):
 • Increase the area of basal lamina
 • Strengthen attachment between epidermis and dermis
Intermediate Strata

• **Stratum Spinosum**

 – The “spiny layer”:

 • Produced by division of stratum germinativum

 • Eight to ten layers of keratinocytes bound by desmosomes

 • Cells shrink until cytoskeletons stick out (spiny)
Intermediate Strata

• **Stratum Granulosum**
 – The “grainy layer”
 – Stops dividing, starts producing

• **Stratum Lucidum**
 – The “clear layer”:
 • Found only in thick skin
 • Covers stratum granulosum
Stratum Corneum

• The “Horn Layer”
 – Exposed surface of skin
 – 15 to 30 layers of keratinized cells
 – Water resistant
 – Shed and replaced every 2 weeks
Epidermis

• Keratinization
 – The formation of a layer of dead, protective cells filled with keratin
 – Occurs on all exposed skin surfaces except eyes
 – Skin life cycle
 – It takes 2 to 4 weeks for a cell to move from \textit{stratum germinativum} to \textit{stratum corneum}
5-2 Factors influencing skin color are epidermal pigmentation and dermal circulation
The Role of Pigmentation

- Two pigments
 - **Carotene:**
 - Orange-yellow pigment
 - Found in orange vegetables
 - Accumulates in epidermal cells and fatty tissues of the dermis
 - Can be converted to vitamin A
 - **Melanin:**
 - Yellow-brown or black pigment
 - Produced by melanocytes in stratum germinativum
 - Stored in transport vesicles (melanosomes)
 - Transferred to keratinocytes
- Blood circulation (red blood cells)
Figure 5-3
Melanocytes

Figure 5-3

Copyright © 2010 Pearson Education, Inc.
Skin Color

- Function of Melanocytes
 - Melanin protects skin from sun damage
 - Ultraviolet (UV) radiation
 - Causes DNA mutations and burns that lead to cancer and wrinkles
 - Skin color depends on melanin production, not on the number of melanocytes
Skin Color

• Capillaries and Skin Color
 – Oxygenated red blood contributes to skin color:
 • Blood vessels dilate from heat, skin reddens
 • Blood flow decreases, skin pales
 – Cyanosis:
 • Bluish skin tint
 • Caused by severe reduction in blood flow or oxygenation
5-3 Sunlight has detrimental and beneficial effects on the skin
The Epidermis and Vitamin D$_3$

- Vitamin D$_3$
 - Epidermal cells produce cholecalciferol (vitamin D$_3$):
 - In the presence of UV radiation
 - Liver and kidneys convert vitamin D$_3$ into calcitriol:
 - To aid absorption of calcium and phosphorus
- Insufficient vitamin D$_3$:
 - Can cause rickets
Types of Skin Cancer

(a) Basal cell carcinoma

(b) Melanoma

Figure 5-4
5-4 The dermis is the tissue layer that supports the epidermis.
The Dermis

• The **Dermis**
 – Is located between epidermis and subcutaneous layer
 – Anchors epidermal accessory structures (hair follicles, sweat glands):
 – Has two components
 • Outer **papillary layer**
 • Deep **reticular layer**
The Dermis

• The Papillary Layer
 – Consists of areolar tissue
 – Contains smaller capillaries, lymphatics, and sensory neurons
 – Has dermal papillae projecting between epidermal ridges

• The Reticular Layer
 – Consists of dense irregular connective tissue
 – Contains larger blood vessels, lymph vessels, and nerve fibers
 – Contains collagen and elastic fibers
 – Contains connective tissue proper
The hypodermis is tissue that connects the dermis to underlying tissues.
The Hypodermis

• The subcutaneous layer or hypodermis
 – Lies below the integument
 – Stabilizes the skin
 – Allows separate movement
 – Is made of elastic areolar and adipose tissues
 – Is connected to the reticular layer of integument by connective tissue fibers
 – Has few capillaries and no vital organs
 – Is the site of subcutaneous injections using hypodermic needles
The Hypodermis

• Deposits of subcutaneous fat
 – Have distribution patterns determined by hormones
 – Are reduced by cosmetic liposuction (lipoplasty)
General Structure of the Integumentary System

Figure 5-1
5-6 Hair is composed of keratinized dead cells that have been pushed to the surface
Hair

- Hair, hair follicles, sebaceous glands, sweat glands, and nails
 - Are integumentary accessory structures
 - Are located in dermis
 - Project through the skin surface
Hair

- The human body is covered with hair, except
 - Palms
 - Soles
 - Lips
 - Portions of external genitalia

- Functions of Hair
 - Protects and insulates
 - Guards openings against particles and insects
 - Is sensitive to very light touch
Hair Follicles and Hairs

Figure 5-5
Hair Follicles and Hairs

Figure 5-5

- Exposed shaft of hair
- Hair shaft
- Sebaceous gland
- Boundary between hair shaft and hair root
- Arrector pili muscle
- Hair root
- Connective tissue sheath of hair follicle
- Site of cell division and hair production
- Hair papilla

Copyright © 2010 Pearson Education, Inc.
Hair Follicles and Hairs

Figure 5-5

Connective tissue sheath
Wall of hair follicle
Cuticle of hair
Cortex of hair
Medulla of hair

Copyright © 2010 Pearson Education, Inc.
Hair

• Hair Color
 – Produced by melanocytes at the hair papilla
 – Determined by genes
5-7 Sebaceous glands and sweat glands are exocrine glands found in the skin.
Exocrine Glands in Skin

• **Sebaceous Glands** *(Oil Glands)*
 – Holocrine glands
 – Secrete **sebum**

• **Sweat Glands**
 – Two types: apocrine glands and merocrine *(eccrine)* glands
 – Watery secretions
Sebaceous Glands and Sweat Glands

• Sebaceous (Oil) Glands
 – Simple branched alveolar glands:
 • Associated with hair follicles
 – Sebaceous follicles:
 • Discharge directly onto skin surface
 • Sebum:
 – contains lipids and other ingredients
 – lubricates and protects the epidermis
 – inhibits bacteria
Sebaceous Glands and Sebaceous Follicles

Figure 5-6
Sweat Glands

• **Apocrine sweat glands**
 – Found in armpits, around nipples, and groin
 – Secrete products into hair follicles
 – Produce sticky, cloudy secretions
 – Break down and cause odors
 – Surrounded by myoepithelial cells:
 • Squeeze apocrine gland secretions onto skin surface
 • In response to hormonal or nervous signal
Sweat Glands

Figure 5-7
Sweat Glands

• Merocrine (Eccrine) Sweat Glands
 – Widely distributed on body surface
 – Especially on palms and soles
 – Discharge directly onto skin surface
 – Sensible perspiration
 – Water, salts, and organic compounds
 – Functions of merocrine sweat gland activity:
 • Cools skin
 • Excretes water and electrolytes
 • Flushes microorganisms and harmful chemicals from skin
5-8 Nails are keratinized epidermal cells that protect the tips of fingers and toes.
Nails

- Nails protect fingers and toes
 - Made of dead cells packed with keratin
 - Metabolic disorders can change nail structure

- Nail production
 - Occurs in a deep epidermal fold near the bone called the **nail root**
The Structure of a Nail

Figure 5-8

- Free edge
- Nail body
- Nail root (site of growth)
- Cuticle (eponychium)
- Lunula
- Nail bed
- Epidermis
- Dermis
- Bone of fingertip
Several steps are involved in repairing the integument following an injury.
Repair of Skin Injuries

Figure 5-9
Figure 5-9
<table>
<thead>
<tr>
<th>CLASSIFICATION</th>
<th>DAMAGE REPORT</th>
<th>APPEARANCE AND SENSATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Degree Burn</td>
<td>Killed: superficial cells of epidermis
Injured: deeper layers of epidermis, papillary dermis</td>
<td>Inflamed; tender</td>
</tr>
<tr>
<td>Second-Degree Burn</td>
<td>Killed: superficial and deeper cells of epidermis; dermis may be affected
Injured: damage may extend into reticular layer of the dermis, but many accessory structures are unaffected</td>
<td>Blisters; very painful</td>
</tr>
<tr>
<td>Third-Degree Burn</td>
<td>Killed: all epidermal and dermal cells
Injured: hypodermis and deeper tissues and organs</td>
<td>Charred; no sensation at all</td>
</tr>
</tbody>
</table>
5-10 Effects of aging include dermal thinning, wrinkling, and reduced melanocyte activity.
Effects of Aging

• Skin injuries and infections become more common.
• The sensitivity of the immune system is reduced.
• Muscles become weaker, and bone strength decreases.
• Sensitivity to sun exposure increases.
• The skin becomes dry and often scaly.
Effects of Aging

- Hair thins and changes color.
- Sagging and wrinkling of the skin occur.
- The ability to lose heat decreases.
- Skin repairs proceed relatively slowly.
5-11 The integumentary system provides protection for all other body systems.
Importance of the Integumentary System

• Protects and interacts with all organ systems

• Changes in skin appearance are used to diagnose disorders in other systems
The Integumentary System in Perspective

Functional Relationships Between the Integumentary System and Other Systems
The Skeletal System

• The Skeletal System provides structural support.

• The Integumentary System synthesizes vitamin D₃, essential for calcium and phosphorus absorption (bone maintenance and growth).
The Muscular System

- The Muscular System’s facial muscles pull against skin of face, producing expressions important in communication

- The Integumentary System synthesizes vitamin D₃, essential for normal calcium absorption (calcium ions play an essential role in muscle contraction)
The Nervous System

- The Nervous System controls blood flow and sweat gland activity for thermoregulation; stimulates contraction of arrector pili muscles to elevate hairs.

- The Integumentary System’s receptors in dermis and deep epidermis provide sensations of touch, pressure, vibration, temperature, and pain.
The Endocrine System

- The Endocrine System includes the sex hormones that stimulate sebaceous and apocrine gland activity, and develop secondary sexual characteristics; suprarenal hormones alter blood flow to skin and mobilize lipids from fat cells.

- The Integumentary System synthesizes vitamin D₃, precursor of calcitriol, a hormone produced by the kidneys.
The Cardiovascular System

- The Cardiovascular System provides oxygen and nutrients; delivers hormones and cells of immune system; carries away carbon dioxide, waste products, and toxins; provides heat to maintain normal skin temperature.

- The Integumentary System’s mast cells produce localized changes in blood flow and capillary permeability.
The Lymphatic System

- The Lymphoid System assists in defending the integument by providing additional macrophages and mobilizing lymphocytes.
- The Integumentary System provides physical barriers that prevent pathogen entry; macrophages resist infection; mast cells trigger inflammation and initiate the immune response.
The Respiratory System

• The Respiratory System provides oxygen and eliminates carbon dioxide

• The Integumentary System’s hairs guard entrance to nasal cavity
The Digestive System

- The Digestive System Provides nutrients for all cells and lipids for storage by adipocytes.

- The Integumentary System synthesizes vitamin D₃, needed for absorption of calcium and phosphorus.

Copyright © 2010 Pearson Education, Inc.
The Urinary System

- The Urinary System excretes waste products, maintains normal body fluid pH and ion composition.

- The Integumentary System assists in elimination of water and solutes; keratinized epidermis limits fluid loss through skin.
The Reproductive System

- The Reproductive System’s sex hormones affect hair distribution, adipose tissue distribution in subcutaneous layer, and mammary gland development.

- The Integumentary System covers external genitalia; provides sensations that stimulate sexual behaviors; mammary gland secretions provide nourishment for newborn infant.