Endocrine System

Bio 219
Napa Valley College
Dr. Adam Ross
Just a reminder: From first lecture

How to excel at learning:
Overview

- **Endocrine gland:**
 - Gland that secretes hormones into the ECF; no ducts

- **Hormone:**
 - Chemical messenger that is carried in the blood
 - Can bind to receptor on membrane or inside cell

- **Receptor:**
 - Hormone binds to receptor to cause effect
 - No action without properly functioning receptors
Major Endocrine Glands

- Pineal gland
- Parathyroid gland
- Hypothalamus
- Pituitary gland
- Thyroid gland
- Thymus
- Adrenal gland
- Kidney
- Pancreas
- Ovary (in female)
- Testis (in male)
Comparison: Nervous vs Endocrine

- Nervous System
 - fast response
 - short duration
 - secretes neurotransmitters
 - specific, localized effects

- Endocrine System
 - slow response
 - longer duration
 - secretes hormones
 - widespread effects
Chemical Signaling Molecules

• Neurotransmitters
 • Local effects at synapses

• Hormones
 • Widespread effects based on receptor location

• Neurohormones
 • Hormones released by neurons

• Paracrine
 • Effects on neighboring cells

• Autocrine
 • Cell secretes substance that effects itself

• Endocrine
 • Secretes hormones into internal environment of the body
Two major types of hormones:

• Lipophilic:
 • Steroid hormones, thyroid hormones, etc
 • Cross plasma membrane
 • Bind to cytoplasmic receptors
 • Often cause changes in gene expression

• Non-Lipophilic (Lipophobic)
 • Epi, Insulin, ADH, etc
 • Do not cross plasma membrane
 • Bind to membrane receptors
Mechanism of Action:

• Lipophilic Hormones:
 • Hormone diffuses across plasma membrane
 • Binds to cytosolic receptor
 • Hormone-Receptor complex (HRC) moves to nucleus
 • HRC binds to DNA and acts as a transcription factor
 • Regulates transcription of specific genes (can be up or down)
 • Changes in mRNA levels cause changes in protein levels
 • Leads to changes in activity associated with those proteins
Mechanism of Action:

• Lipophobic Hormones:
 • Hormone binds to receptor on extracellular side of plasma membrane
 • Hormone-Receptor complex is now active and activates signal transduction pathway
 • Activates enzymes within the cell
 • Mostly metabolic effects

• Can be enzyme linked receptors
 • Insulin receptor- tyrosine kinase

• Or G-Protein coupled receptors
 • Adrenergic receptors
Transduction of Message

• When hormone binds to surface receptor, how does message get relayed to rest of cell?
 • Second Messengers
 • Activation of receptor leads to intracellular changes that alter the activity of the cell
Second Messengers

- **3',5'-Cyclic AMP (cAMP)**: Activates protein kinase A (PKA)
- **3',5'-Cyclic GMP (cGMP)**: Activates protein kinase G (PKG) and opens cation channels in rod cells
- **1,2-Diaclylglycerol (DAG)**: Activates protein kinase C (PKC)
- **Inositol 1,4,5-trisphosphate (IP₃)**: Opens Ca²⁺ channels in the endoplasmic reticulum
Second Messengers

• Cyclic AMP Second Messenger Pathway: (eg β-adrenergic)
 • Hormone binds to receptor
 • G protein associated with receptor is activated
 • Activated G-protein activates adenylyl cyclase in the plasma membrane
 • A. cyclase converts ATP to cyclic AMP (cAMP)
 • Cyclic AMP acts as second messenger, activates protein kinase enzymes in the cell
 • Protein Kinase activates other enzymes (or non-enzymatic proteins) via phosphorylation (covalent)
Hormones that act via cAMP mechanisms:
- Epinephrine
- Glucagon
- ACTH
- PTH
- FSH
- TSH
- LH
- Calcitonin

1. Hormone (1st messenger) binds receptor.
2. Receptor activates G protein (G_S).
4. Adenylate cyclase converts ATP to cAMP (2nd messenger).
5. cAMP activates protein kinases.

Triggers responses of target cell (activates enzymes, stimulates cellular secretion, opens ion channel, etc.)
- Sympathetic stimulation releases norepinephrine and initiates a cyclic AMP second-messenger system.
Second Messengers:

• Phospholipase-C (DAG-IP$_3$) Second messenger system
 • (α-adrenergic receptors)
 • Activation of G-protein activates Phospholipase-C (PLC) enzyme in membrane
 • PLC cleaves a membrane phospholipid:
 • Forms DAG and IP$_3$
 • IP$_3$ causes calcium release and smooth muscle constriction in vascular tissue
 • Binds to IP$_3$ Receptor
Alpha-1-adrenergic receptor

![Diagram of the alpha-1-adrenergic receptor signaling pathway](image)
Stimulation of hormone secretion

• Neural- neurons synapse onto endocrine cells
• Humoral- substances in blood or interstitial fluid
• Hormonal- by other hormones
Responsiveness to hormones

- Depends on:
- Concentration of hormone in blood
 - Rate of secretion vs rate of degradation/ excretion (half-life)/
- Abundance of receptors
 - Up or Down regulation
- Influence of other hormones/ signals
 - Synergistic
 - One amplifies the other
 - Permissive
 - One allows the other to happen
 - Antagonistic
 - One inhibits the other
Half-Life

- Half life of a hormone is the amount of time it takes for half of the hormone to be eliminated from the body
 - Can be metabolized (often by Liver) or excreted (mostly in urine)