Focus on Asthma

(Relates to Chapter 29, “Nursing Management: Obstructive Pulmonary Diseases,” in the textbook)

Asthma - Definition

- Chronic inflammatory disorder of airways
- Causes airway hyperresponsiveness leading to wheezing, breathlessness, chest tightness, and cough

Significance

- Affects about 16 million Americans
- Women are 66% more likely to have asthma than men.
- Older adults may be undiagnosed.
Triggers of Asthma

Allergens
- May be seasonal or year round depending on exposure to allergen
- House dust mites
- Cockroaches
- Furry animals
- Fungi
- Molds

Exercise
- Induced or exacerbated after exercise
- Pronounced with exposure to cold air
- Breathing through a scarf or mask may ↓ likelihood of symptoms

Air Pollutants
- Can trigger asthma attacks
 - Cigarette or wood smoke
 - Vehicle exhaust
 - Elevated ozone levels
 - Sulfur dioxide
Triggers of Asthma

Occupational Factors
- Most common form of occupational lung disease
- Exposure to diverse agents
- Arrive at work well, but experience a gradual decline

Respiratory Infection
- Major precipitating factor of an acute asthma attack
- ↑ inflammation hyperresponsiveness of the tracheobronchial system

Nose and Sinus Problems
- Allergic rhinitis and nasal polyps
- Large polyps are removed
- Sinus problems are usually related to inflammation of the mucous membranes
Triggers of Asthma

Drugs and Food Additives

- Asthma triad: Nasal polyps, asthma, and sensitivity to aspirin and NSAIDs
- Wheezing develops in about 2 hours.
- Sensitivity to salicylates
 - Found in many foods, beverages, and flavorings
- β-Adrenergic blockers

Triggers of Asthma

Drugs and Food Additives

- Food allergies may cause asthma symptoms.
 - Rare in adults
 - Avoidance diets

Triggers of Asthma

Gastroesophageal Reflux Disease

- Exact mechanism is unknown.
 - Reflux of acid could be aspirated into lungs, causing bronchoconstriction.

Triggers of Asthma
Emotional Stress

- Psychologic factors can worsen the disease process.
- Attacks can trigger panic and anxiety.
- Extent of effect is unknown.

Pathophysiology

- Primary response is chronic inflammation from exposure to allergens or irritants.
- Leading to airway hyperresponsiveness and acute airflow limitations.
Pathophysiology

- Inflammatory mediators cause early-phase response.
- Vascular congestion
- Edema formation
- Production of thick, tenacious mucus
- Bronchial muscle spasm
- Thickening of airway walls
Pathophysiology

• Late-phase response
 • Occurs within 4 to 10 hours after initial attack
 • Occurs in only 30% to 50% of patients
 • Can be more severe than early phase and can last for 24 hours or longer

Pathophysiology

• Late-phase response
 • If airway inflammation is not treated or does not resolve, it may lead to irreversible lung damage.

Clinical Manifestations

• Unpredictable and variable
 • Recurrent episodes of wheezing, breathlessness, cough, and tight chest
 • May be abrupt or gradual
 • Lasts minutes to hours
<table>
<thead>
<tr>
<th>Clinical Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Expiration may be prolonged.</td>
</tr>
<tr>
<td>• Inspiration-expiration ratio of 1:2 to 1:3 or 1:4</td>
</tr>
<tr>
<td>• Bronchospasm, edema, and mucus in bronchioles narrow the airways.</td>
</tr>
<tr>
<td>• Air takes longer to move out.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Wheezing is unreliable to gauge severity.</td>
</tr>
<tr>
<td>• Severe attacks may have no audible wheezing.</td>
</tr>
<tr>
<td>• Usually begins upon exhalation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cough variant asthma</td>
</tr>
<tr>
<td>• Cough is only symptom.</td>
</tr>
<tr>
<td>• Bronchospasm is not severe enough to cause airflow obstruction.</td>
</tr>
</tbody>
</table>
Clinical Manifestations

• Difficulty with air movement can create a feeling of suffocation.
• Patient may feel increasingly anxious.

Clinical Manifestations

• An acute attack usually reveals signs of hypoxemia.
 • Restlessness
 • ↑ anxiety
 • Inappropriate behavior

Clinical Manifestations

• More signs of hypoxemia
 • ↑ pulse and blood pressure
 • Pulsus paradoxus (drop in systolic BP during inspiratory cycle >10 mm Hg)
Classification of Asthma
- Mild intermittent
- Mild persistent
- Moderate persistent
- Severe persistent

Complications
- Severe acute attack
 - Respiratory rate >30/min
 - Pulse >120/min
 - PEFR is 40% at best.
 - Usually seen in ED or hospitalized

Complications
- Life-threatening asthma
 - Too dyspneic to speak
 - Perspiring profusely
 - Drowsy/confused
 - Require hospital care and often admitted to ICU
Diagnostic Studies
• Detailed history and physical exam
• Pulmonary function tests
• Peak flow monitoring
• Chest x-ray
• ABGs

Diagnostic Studies
• Oximetry
• Allergy testing
• Blood levels of eosinophils
• Sputum culture and sensitivity

Collaborative Care
• Education
 • Start at time of diagnosis.
 • Integrate through care.
• Self-management
 • Tailored to needs of patient
 • Culturally sensitive
Collaborative Care

- Desired therapeutic outcomes
 - Control or eliminate symptoms
 - Attain normal lung function
 - Restore normal activities
 - Reduce or eliminate exacerbations and side effects of medications
Collaborative Care

- Mild intermittent and mild persistent asthma
 - Avoid triggers of acute attacks.
 - Premedicate before exercising.
 - Choice of drug therapy depends on symptom severity.

Collaborative Care

- Acute asthma episode
 - Respiratory distress
 - Treatment depends upon severity and response to therapy.
 - Severity measured with flow rates

- O₂ therapy may be started and monitored with pulse oximetry or ABGs in severe cases.
Collaborative Care

- Severe exacerbations
 - Most therapeutic measures are the same as for acute episode.
 - ↑ in frequency and dose of bronchodilators

- IV corticosteroids are administered every 4 to 6 hours, then are given orally.
- Continuous monitoring of patient is critical.
- IV magnesium sulfate is given as a bronchodilator.
- Supplemental O₂ is given by mask or nasal cannula for 90% O₂ saturation.
- Arterial catheter may be used to facilitate frequent ABG monitoring.
- IV fluids are given because of insensible loss of fluids.
The nurse anticipates intubation and mechanical ventilation for the patient with a severe exacerbation of asthma (status asthmaticus) when:

1. The PaCO\(_2\) is 60 mm Hg.
2. The PaO\(_2\) decreases to 70 mm Hg.
3. Severe respiratory muscle fatigue occurs.
4. The patient has extreme anxiety and fear of suffocation.

Drug Therapy

- Long-term control medications
 - Achieve and maintain control of persistent asthma
- Quick-relief medications
 - Treat symptoms of exacerbations

Audience Response Question

The nurse anticipates intubation and mechanical ventilation for the patient with a severe exacerbation of asthma (status asthmaticus) when:

1. The PaCO\(_2\) is 60 mm Hg.
2. The PaO\(_2\) decreases to 70 mm Hg.
3. Severe respiratory muscle fatigue occurs.
4. The patient has extreme anxiety and fear of suffocation.
Drug Therapy

- Three types of antiinflammatory drugs
 - Corticosteroids
 - Leukotriene modifiers
 - Monoclonal antibody to IgE

- Corticosteroids (e.g., beclomethasone, budesonide)
 - Suppress inflammatory response
 - Inhaled form is used in long-term control.
 - Systemic form to control exacerbations and manage persistent asthma

- Corticosteroids
 - Reduce bronchial hyperresponsiveness
 - Decrease mucous production
 - Are taken on a fixed schedule
Drug Therapy

- **Corticosteroids**
 - Oropharyngeal candidiasis, hoarseness, and a dry cough are local side effects of inhaled drug.
 - Can be reduced using a spacer or by gargling after each use

Spacer

Fig. 29-6. Example of an AeroChamber spacer used with a metered-dose inhaler.

Drug Therapy

- Leukotriene modifiers or inhibitors (e.g., zafirlukast, montelukast, zileuton)
 - Block action of leukotrienes—potent bronchoconstrictors
Drug Therapy

- **Leukotriene modifiers or inhibitors**
 - Have both bronchodilator and antiinflammatory effects
 - Not indicated for acute attacks
 - Used for prophylactic and maintenance therapy

Drug Therapy

- **Anti-IgE (e.g., Xolair)**
 - ↓ circulating free IgE levels
 - Prevents IgE from attaching to mast cells, preventing release of chemical mediators
 - Subcutaneous administration every 2 to 4 weeks

Drug Therapy

- **Three types of bronchodilators**
 - β₂-Adrenergic agonists
 - Methylxanthines
 - Anticholinergics
Drug Therapy

- β-Adrenergic agonists (e.g., albuterol, metaproterenol)
 - Effective for relieving acute bronchospasm
 - Onset of action in minutes and duration of 4 to 8 hours

Drug Therapy

- Prevent release of inflammatory mediators from mast cells
 - Not for long-term use

Drug Therapy

- Methylxanthines (e.g., theophylline)
 - Less effective long-term bronchodilator
 - Alleviates early phase of attacks but has little effect on bronchial hyperresponsiveness
 - Narrow margin of safety
Drug Therapy

- Anticholinergic drugs (e.g., ipratropium)
 - Block action of acetylcholine
 - Usually used in combination with a bronchodilator
 - Most common side effect is dry mouth.

Patient Teaching Related to Drug Therapy

- Correct administration of drugs is a major factor in success.
 - Inhalation of drugs is preferable to avoid systemic side effects.
 - MDIs, DPIs, and nebulizers are devices used to inhale medications.

Patient Teaching Related to Drug Therapy

- Correct administration of drugs
 - Using an MDI with a spacer is easier and improves inhalation of the drug.
 - DPI (dry powder inhaler) requires less manual dexterity and coordination.
Nonprescription Combination Drugs

- Should be avoided in general
- Epinephrine can also increase heart rate and blood pressure.
- Ephedrine stimulates CNS and cardiovascular system.
- Dietary supplements were banned in 2004.
Nursing Management
Nursing Assessment
- Health history
 - Especially of precipitating factors and medications
- ABGs
- Lung function tests

Nursing Management
Nursing Assessment
- Physical examination
 - Use of accessory muscles
 - Diaphoresis
 - Cyanosis
 - Lung sounds

Nursing Management
Nursing Diagnoses
- Ineffective airway clearance
- Anxiety
- Deficient knowledge
Nursing Management Planning

- Overall Goals
 - Maintain greater than 80% of personal best PEFR
 - Have minimal symptoms
 - Maintain acceptable activity levels

Nursing Management Planning

- Overall Goals
 - Few or no adverse effects
 - No recurrent exacerbations of asthma or decreased incidence of asthma attacks
 - Adequate knowledge to participate in and carry out management

Nursing Management Health Promotion

- Teach patient to identify and avoid known triggers.
 - Use dust covers
 - Use scarves or masks for cold air
 - Avoid aspirin or NSAIDs
Nursing Management
Health Promotion
- Prompt diagnosis and treatment of upper respiratory infections and sinusitis may prevent exacerbation.
- Fluid intake of 2 to 3 L every day

Nursing Management
Nursing Implementation
- Acute intervention
 - Monitor respiratory and cardiovascular systems:
 - Lung sounds
 - Respiratory rate
 - Pulse
 - BP

Nursing Management
Nursing Implementation
- An important goal of nursing is to ↓ the patient’s sense of panic.
 - Stay with patient.
 - Encourage slow breathing
 - Position comfortably.
Nursing Management
Nursing Implementation

- Ambulatory and home care
 - Patient and health care professional must monitor responsiveness to medication.
 - Must learn about medications and develop self-management strategies.

Nursing Management
Nursing Implementation

- Ambulatory and home care
 - Patient must understand importance of continuing medication when symptoms are not present.

Nursing Management
Nursing Implementation

- Important patient teaching
 - Seek medical attention for bronchospasm or when severe side effects occur.
 - Maintain good nutrition.
 - Exercise within limits of tolerance.
Nursing Management
Nursing Implementation

- Important patient teaching
 - Measure peak flow at least daily.
 - Asthmatic individuals frequently do not perceive changes in their breathing.

- Peak flow should be monitored daily and a written action plan should be followed according to results of daily PEFR.

Nursing Management
Nursing Implementation

- Peak flow results
 - **Green Zone**
 - Usually 80% to 100% of personal best
 - Remain on medications.
Peak flow results

Yellow Zone
- Usually 50% to 80% of personal best
- Indicates caution
- Something is triggering asthma.

Red Zone
- 50% or less of personal best
- Indicates serious problem
- Definitive action must be taken with healthcare provider.