Fluid & Electrolytes

- Function of fluid
 - Transport of nutrients to & wastes from cells
 - Helps maintain normal body temp.
 - Lubricates & cushions
 - Facilitates digestion & elimination
 - Maintains vascular volume
 - Solvent for electrolytes

- Function of electrolytes
 - Body water regulation & osmolality
 - Acid-base balance
 - Enzyme activity
 - Neuromuscular activity
Fluid & Electrolytes

- **Body fluid distribution**
 - Water & electrolytes
 - 60% of weight (adult & children > 2 yrs.)
 - ICF – intracellular fluid = 40%
 - ECF – extracellular fluids = 20%
 - Intravascular 5%
 - Interstitial 15%

Electrolytes

- **Plasma Cations** = 154
 - Sodium (Na) 142
 - Potassium (K) 5
 - Calcium (Ca²⁺) 5
 - Magnesium (Mg²⁺) 2

- **Plasma Anions** = 154
 - Chloride (Cl) 104
 - Bicarbonate (HCO₃⁻) 26
 - Phosphate (HPO₄²⁻) 2
 - Sulfate (SO₄²⁻) 1
 - Organic acids & proteinate 22

- **ICF Cations** = 200
 - Potassium 150
 - Magnesium 40
 - Sodium 10

- **ICF Anions** = 200
 - Phosphate
 - Sulfates (150)
 - Bicarbonate 10
 - Proteinate 40

Acid-Base Balance

- **pH** – H⁺ ion concentration in blood
- **Hydrogen** is a product of metabolism
- **Normal pH** 7.35 – 7.45
- **Chemical buffer systems**
 - Remove or release Hydrogen ions
 - ECF buffers – phosphates & plasma proteins
 - ICF buffers – phosphates, proteins, & Hemoglobin
 - Bicarbonate – Carbonic acid buffer system
 - Acid – donates H⁺ ions
 - Base – accepts H⁺ ions
Acid-Base

- **Acidosis**: pH 6.80
- **Alkalosis**: pH 7.80

Death

1 part acid

20 parts base

Lung

1.2mEq/L

HCO₃⁻

24mEq/L

H₂O + CO₂ ⇌ H₂CO₃ ⇌ H + HCO₃

Body Fluid Balance

Routes of Gains & Losses

- **Gains**
 - Food: 800-1000ml
 - Fluid intake: 1100-1400ml
 - Oxidative metabolism: 300ml

- **Losses**
 - Lungs: 400ml
 - Skin: 500-600ml
 - G.I tract: 100-200
 - Small intestine absorbs fluid
 - Kidneys: 1200-1500

Fluid Regulation

- **Osmolality (Tonicity) = concentration**
 - iso-osmolar, hypo-osmolar, hyperosmolar
 - Normal serum osmolality = 280-295mOsm/kg of H₂O

- Semi permeable membrane

- Isotonic
 - Iso-osmolar

- Isotonic
 - Iso-osmolar
Fluid Regulation - Osmosis

- Osmosis
 - Osmotic pull by particles /unit of water (Osmolality)
 - Movement of fluid from area of < concentration to area of > concentration

Semi permeable membrane

Hypotonic Hypertonic
Hypo-osmolar Hyperosmolar

Fluid Regulation - Osmosis

- Osmosis
 - Osmotic pull by particles /unit of water (Osmolality)
 - Movement of fluid from area of < concentration to area of > concentration

Semi permeable membrane

Fluid Regulation - Filtration

Arterial side Capillary bed Venous side

Interstitial space Cell Lymphatic system

HP = 32 COP = 22 FP = 10
Fluid Regulation - Filtration

Arterial side
Capillary bed
Venous side

HP = 32
COP = 22
FP = +10

HP = 12
FP = -10

Interstitial space
Cell

Lymphatic system

Fluid Regulation

- Thirst mechanism
 - ↑ Plasma Osmolality
 - ↓ Plasma Volume
 - Angiotensin II
 - Thirst Center
 - Dec. Potassium or Inc. Sodium
 - Dry oropharyngeal Mucous membranes
 - Psychological factors

Fluid Regulation – Kidneys
Retention & Excretion

- Regulation of ECF volume & osmolality by selective retention & excretion
- Hydrostatic pressure
- Filtration = excretion of urine/waste products
- GFR = 125ml/minute
- Normal urine output – 20-30ml/hr
Renin-Angiotensin-Aldosterone System

BP\downarrow or Na\downarrow

Glomerulus

Renin secretion

Liver

Angiotensin converted to Angiotensin I

Lungs

Angiotensin I converted to Angiotensin II

Adrenals produce aldosterone

Aldosterone

Angiotensin II – adrenals* secrete aldosterone

Na & H_2O retention = fluid volume & Na levels

Kidneys retain Na & H_2O

Antidiuretic Hormone (ADH)

Hypothalmus Osmoreceptors

Brain

ADH

H_2O retention

↓Urine volume

↑Urine concentration

Plasma Osmolality
Electrolyte Balancing Act

- Active transport
 - ATP – solutes move from area of < concentration to areas of > concentration
- The body expands energy to maintain the extracellular Na and the intracellular K by means of cell membrane Sodium – Potassium pump.

Sodium Balance

- Normal serum sodium (Na+) – 135 – 145 mEq/L (Cl 95 - 108)
- 95% in ECF
- Primary role – Control H₂O distribution & volume
- Normal intake 50-90mEq as NaCl
- Kidney conserves or excretes Na prn

Potassium (K⁺)

- Function
 - Regulation of ICF osmolality
 - Promotes transmission/conduction of nerve impulses
 - Promotes contraction of skeletal, cardiac, & smooth muscle
 - Maintenance of acid-base balance
Potassium (K⁺)

- Major intracellular cation – 150 mEq/L
- Normal serum levels – 3.5–5 mEq/L
- Poor storage – daily requirement needs
- Kidneys excrete 80-90% of K⁺

Dietary Sources of K

- Meats
- Vegetables
- Fruits
- Dried fruits, nuts, seeds
- Chocolate

Calcium

- Se Ca²⁺
 - Total 8.5 – 10.5 mg/dL (100 ml)
 - Bound with protein & ionized
 - Ionized – 4 – 5 mEq/L
 - 99% in bones & teeth
Calcium - Function

- Transmission & conduction of nerve impulses
- Stimulates skeletal, smooth, & cardiac muscle contraction
- Promotes coagulation
- Bone & teeth formation
- Hormone secretion

Calcium – Regulation

- Vitamin D
- Phosphates
 - PO_3^-
 - Inverse relationship with Calcium
- PTH
- Calcitonin

Magnesium

- Distribution
 - 2/3 found in bones
 - 1/3 found in ICF
 - 1% in ECF
- Absorbed in small bowel
- Excreted by kidneys
- Function
 - Intracellular metabolism
 - Neuromuscular - similar to calcium
Bicarbonate
• HCO³⁻
• Major chemical buffer in ECF & ICF
• Regulated by kidneys
• Arterial measurement
 – 20-26 mEq/L
• Venous measurement
 – CO₂ content 24-30 mEq/L

ABG Values
• pH 7.35 – 7.45
 – <7.35
 – >7.45
• PaCO₂ 35-45 mmHg
 – <35 (hypocapnia)
 – >45 (hypercapnia)
• HCO₃⁻ 20-26 mEq/L
 – <20 (acidosis)
 – >26 (alkalosis)

Acid-Base

\[
\text{H}_2\text{O} + \text{CO}_2 \rightleftharpoons \text{H}_2\text{CO}_3 \rightleftharpoons \text{H}^+ + \text{HCO}_3^- \\
\text{K}\text{I}\text{D}\text{N}\text{E}\text{Y}\text{S}
\]
Acid-Base - Acidosis

Gain of acid

H₂CO₃

H₂O + CO₂ → H₂CO₃ → H⁺ + HCO₃⁻

HCO₃⁻

Death

Acidosis

7.35 7.45

Alkalosis

7.80

Metabolic Acidosis – Mechanism

• Accumulation of fixed acids
 – Lactic acidosis
 – Renal failure
 – Ketoacidosis
 – Ingestion
 • ASA
 • Antifreeze

• Loss of base
 – Renal tubular acidosis
 – Carbonic anhydrase inhibitors
 • Diamox
 – Diarrhea
Metabolic Acidosis - Symptoms

- pH ↓
- HCO3 ↓
- Hyperventilation (PaCO2 ↓) compensatory
- Lethargy/weakness
- Hyperkalemia
- Hypotension & myocardial depression

Respiratory Acidosis

- **Causes**
 - Inadequate excretion of CO2
 - Acute or chronic respiratory alterations
- **Risk factors favoring hypoventilation**
 - Obesity
 - Tight binders/dressings
 - Postoperative pain
 - Abdominal distention

Respiratory Acidosis – Symptoms

- ABG’s
 - pH ↓
 - PaCO2 ↑
 - HCO3 (↑ compensatory)
- Headache
- Hypertension
- Hyperkalemia
- Hypoxemia
Acid-Base

Alkalosis

Gain of base

Death

H₂O + CO₂ → H₂CO₃ ↔ H + HCO₃

Acidosis

Loss of acid

H₂CO₃

HCO₃

H₂O + CO₂ → H₂CO₃ ↔ H + HCO₃

1 part acid

20 parts base

6.80

7.80

7.35

7.45

Acid-Base - Alkalosis

Acidosis

Death

H₂CO₃

HCO₃

H₂O + CO₂ → H₂CO₃ ↔ H + HCO₃

Alkalosis

Death

K I D N E Y S

L U N G S

1.2mEq/L

24mEq/L

Acid-Base - Alkalosis

Death

Gain of base

H₂CO₃

HCO₃

H₂O + CO₂ → H₂CO₃ ↔ H + HCO₃

Acidosis

Death

K I D N E Y S

L U N G S
Metabolic Alkalosis - Causes

• Fixed acid loss
 – Vomiting/G.I suction
 – Hypokalemia
• Excess bicarbonate intake
 – Alkali ingestion
 – I.V. NaHCO₃
• Excess bicarbonate reabsorption

Metabolic Alkalosis – Symptoms

• ABG’s
 – pH ↑
 – HCO₃↑
 – PaCO₂ (↑ compensatory)
• Hypoventilation
• Decreased LOC
• Hypokalemia
• Hypochloremia
• Tetany/paresthesia

Respiratory Alkalosis

• Causes relate to hyperventilation
 – Anxiety
 – High fever
 – Thyrotoxicosis
 – Hypoxemia
 – Salicylate intoxication (early)
Respiratory Alkalosis - Symptoms

- ABG’s
 - pH ↑
 - PaCO2 ↓
 - HCO3 ~ (↓ compensated)
- Lightheadedness/confusion
- Inability to concentrate
- Paresthesia
- Palpitations
- Dry mouth

Influencing Factors in Total Body Water

- Body fat
 - Fat cells contain less water
- Sex
 - Women less body fluid than men
- Age
 - Infants
 - 70-80% body weight (Adult 60%)
 - 50% extracellular (Adult 20%)
 - Older adult
 - ↓ % of body weight

Influencing Factors

- Elderly
 - Diminished thirst response
 - Altered ADH response
 - Decreased ability to concentrate urine
 - Chronicity
 - Debilitation
 - Changes in cognition
- Infant - child
Risk Factors

- Compromised regulatory mechanisms
 - Congestive heart failure
 - Renal failure
 - Cirrhosis
 - Steroid excess
- ADH stimulation
- Excess sodium containing fluids/foods
- IV solutions

Alterations in fluid intake & output

- Medications
- G.I.
 - Dysphagia
 - Nausea/vomiting
 - Diarrhea
 - Insufficient intake
 - G.I. suction
- Restraints
- Skin
 - Diaphoresis
 - Wounds/burns
- Fever
 - Increase in metabolism
 - Tachypnea
- Blood loss

History and Interview

- Age
- Acute illness
- Respiratory/Cardiovascular disorders
- Chronic illness
- Renal / G.I. disorders
- Environment
- Diet/ lifestyle
- Medications
Normal Findings

- General
- VS
- Weight
- Intake & Output
- Urine
- Skin turgor
- Mucous membranes
- Thirst
- Edema
- Neck Veins
- Neuromuscular signs

Diagnostic Tests

- Serum electrolytes
 - Sodium
 - Potassium
 - Chloride
 - CO₂
- Serum osmolality
- ABG's
- Hematocrit
- BUN
- Creatinine
- BUN:creatinine ratio
- Specific gravity
- Urine osmolality

Isotonic Imbalance - Fluid Volume Deficit (FVD)

- Decrease in intravascular & interstitial fluids = hypovolemia
- Isotonic FVD
 - Equal water & lyte loss
 - Hemorrhage
 - Diaphoresis
 - Diuretics
Fluid Volume Deficit - Isotonic

- S&S
 - BP
 - Heart rate
 - Mucous membranes
 - Skin turgor
 - Weight
 - Venous filling
 - Urine output
 - LOC

FVD - Diagnostic Tests

- Serum Na$^+$ \(\Rightarrow\) or \(\uparrow 145\)
- BUN \(\uparrow >25\)
- Hematocrit \(\uparrow >50\%\)
- Specific gravity \(\uparrow > 1.025\)

Extracellular Fluid Volume Excess (FVE)

- Abnormal fluid retention in intravascular & interstitial spaces
- Secondary to \(\uparrow\) serum Na
- Sodium & Water retained in proportion

\[\text{NA 140mEq/L} \quad \text{ISOTONIC} \quad \text{FLUID}\]

\[\text{NORMAL VOLUME} \quad \text{EXCESS VOLUME}\]
Isotonic Fluid Volume Excess

• Causes
 – Congestive heart failure
 – Renal failure
 – Excessive sodium intake
 – Increased serum aldosterone levels
 – Steroids

Isotonic Fluid Volume Excess

• S&S
 – Weight
 – Edema
 – BP
 – Urine output
 – Venous filling
 – Breath sounds

FVE – Manifestations

• Cardiovascular
 – B.P.
 – Pulse quality
 – Pitting edema
 • Sacral
 • Peripheral
 – Weight gain
 – Distended veins
 – S₃ heart sound

• Respiratory
 – Constant, irritating cough
 – Crackles (Rales)
 – Dyspnea
 – Cyanosis
 – Pleural effusion

• Neurological
 – LOC
FVE – Diagnostic Tests

- Serum sodium
- Hematocrit (% RBC’s in plasma)
- Urine specific gravity
- BUN

Osmolar Imbalances

Dehydration

- Hyperosmolar FVD
 - Water loss > lyte loss
 - Na 140
 - Na 150

Water Excess

- Hypo-osmolar FVE
 - Water gain > lyte gain
 - Na 140
 - Na <135

Hypoosmolar Imbalance – H₂O excess

- Causes
 - Excessive amounts of hypotonic (hyposmolar)solutions
 - D₅W
 - 0.45% saline
 - Excessive intake of free water
 - SIADH
Intracellular Fluid Volume Excess (ICFVE)

- Fluid shift from extracellular spaces to intracellular
- Due to serum hypo-osmolality
- Cellular edema

Effect of Na Imbalance on Cell

Hypernatremia:
Na > 145mEq/L

Cell shrinks as water is pulled out into ECF
Effect of Na Imbalance on Cell

Hyponatremia:

Na < 135mEq/L

Due to excess water gain or Na loss

Cell swells as water is pulled in from ECF

Effect of Na Imbalance on Cell

Hyponatremia:

Na < 135mEq/L

Cell swells as water is pulled in from ECF

Hypernatremia – Symptoms

- S&S of FVE or FVD
- Thirst?
- Temperature?
- Mucous membranes?
- Restlessness, weakness with mild to moderate ↑Na
- Disorientation, delusions, hallucinations with severe ↑Na
- Lethargy, stupor, coma
- Muscle irritability and convulsions
Hyponatremia – Symptoms

- **Relate to Na level**
 - 120-125 mEq/L
 - Nausea
 - Malaise
 - 115-120 mEq/L
 - Headache
 - Lethargy
 - Obtundation
 - <110-115 mEq/L
 - Seizures
 - Coma

- **Volume status**
 - ECF depletion
 - Weakness
 - Fatigue
 - Muscle cramps
 - Postural dizziness

- **Lab data**
 - Se Na?
 - Ua Na?
 - Se osmolality?

HYPOKALEMIA

- **Serum K⁺ < 3.5 mEq/L**

- **Causes**
 - Inadequate nutrient intake
 - G.I. Losses
 - Renal losses
 - Stress – increased cortisol levels
 - Steroids
 - Alkalosis

Hypokalemia – Symptoms

- **Musculoskeletal**
 - Weakness
 - Paralysis
 - Leg cramps

- **G.I.**
 - Ileus
 - Anorexia
 - Vomiting

- **Respiratory**
 - Respirations?
 - SOB
 - Apnea

- **Renal**
 - Polyuria

- **Cardiovascular**
Hyperkalemia \(Se \ K^+ > 5.0 \text{ mEq/L} \)

- **Causes**
 - Decreased potassium excretion
 - Oliguric renal failure
 - Potassium sparing diuretics
 - High potassium intake
 - Excess oral potassium supplements
 - Excessive or rapid IV \(K^+ \) replacement
 - Shift of \(K^+ \) out of cells
 - Acidosis, tissue trauma, malignant cell lysis (chemotherapy)

Hyperkalemia – Symptoms

- **Cardiovascular**
 - EKG changes
 - Dysrhythmias
 - Weakened contractility
 - Tachycardia then bradycardia
 - Cardiac arrest

- **GI**
 - Nausea
 - Intestinal colic
 - Hyperactive bowel sounds

Hyperkalemia - Symptoms

- **Neuromuscular**
 - Vague muscle weakness
 - Flaccid muscle paralysis
 - Paresthesia

- **Renal**
 - Oliguria
 - Anuria
Hypercalcemia — Causes

• Metastatic Cancer
• Immobilization
• Hyperparathyroidism
• Intake
 – Thiazide diuretics, Lithium
 – Excess intake of Ca²⁺ antacids
 – Excess intake of Vitamins A or D

Hypercalcemia — Symptoms

• Neuromuscular weakness
• Renal
 – Polyuria (DI)
 – Hypercalcuria
• GI
 – N & V
 – ↓ peristalsis
 – Constipation
• Cardiovascular
• Impaired cerebral functioning

Hypocalcemia — Symptoms

• Neuromuscular
 – Tetany
 – ↓ threshold potential – less stimulus required for action potential
 – Hyperexcitability of motor & sensory nerves
 – Paresthesia
 – Trousseau’s sign
 – Chvostek’s sign
Hypermagnesemia – Symptoms
- Diminished neuromuscular transmission
- Decreased muscle function
- Hypotension
- Respiratory depression
- Cardiac arrest

Hypomagnesemia <1.8mg/dL Causes
- Losses from G.I tract
- Alcoholism
- Rapid administration of citrated blood
- Medications
 - Loop diuretics
 - Cisplatin

Nursing Diagnosis
- Fluid volume excess
- Fluid volume deficit
- Ineffective breathing pattern
- Impaired mobility
- Impaired skin integrity
- Altered oral mucous membranes
Nursing Interventions

• Assess fluid volume status
• Obtain daily weights
 – 1 liter = 1 kg (2.2 lb.)
• Measure & calculate I & O
• Monitor lab values
• Provide frequent mouth care
• Administer tube feedings &/or IV fluids
• Protect skin integrity
• Safety – implement measures to prevent falls
• Pulmonary toilet
• Offer fluids as appropriate
• Medications

Fluid Types

• Oral rehydration.
• Intravenous solutions
 – Isotonic electrolyte solutions to treat hypotensive patient – expands plasma volume.
 • Lactated Ringer’s.
 • 0.9% Normal Saline.
 – Hypotonic solutions – provides free water & lytes – allows kidneys to select & retain needed amounts. Decreases intravascular osmolality.
 • 0.45%N.S.
 • D₅%/0.2%N.S.

Parenteral Fluids

• Purposes of Fluid Therapy
 – Maintenance Needs
 • Fluids
 • Electrolytes
 – Replacement
 – Correction of electrolyte disturbances
Parenteral Fluids

- Assessment
 - I & O
 - Daily body weights
 - Vital signs
 - Skin turgor
 - Urinary specific gravity
 - Laboratory values
 - I.V. site

Crystalloids

- **Dextrose Solutions**
 - D5W
 - Isotonic \(\rightarrow \) Hypotonic
 - Free water to aid renal excretion of solutes
 - Calories 50Gm Dextrose
 - Avoid excess

- **Sodium Chloride solutions**
 - Isotonic Saline (0.9% NaCl)
 - Expands extracellular fluid
 - Does not enter the ICF
 - Use
 - ECF deficits
 - Hyponatremia
 - Hypochloremia
 - Metabolic alkalosis
Crystalloids

- 0.45% NaCl
 - Hypotonic
 - Provides Na, Cl, free water
 - Basic fluid for maintenance
- Uses
 - Maintenance
 - Hypovolemia with hypernatremia

Crystalloids

- Balanced electrolyte solutions
 - Lactated Ringers (Na, Cl, K, Ca, lactate)
 - Lactate → Bicarbonate
 - Metabolic acidosis
 - Third spacing
 - Fluid resuscitation
 - Normosol
 - Isolyte
 - Plasma-Lyte

Colloids

- Protein or starch molecules in fluid
- Increase osmotic pressure – volume expansion
- Albumin
 - 5% – equivalent to plasma
 - 25% - hyperoncotic
 - Plasma expander
- Dextran
 - Low molecular weight (dextran 40)
 - High molecular weight (dextran 70)
- Hetastarch
- Supplemental fat emulsions (Lipids)
Adverse effects of IV therapy

- Fluid Volume Excess/Deficit
- Activity intolerance
- Impaired skin integrity
- Impaired tissue perfusion
- Risk for dysrhythmias
- Risk for injury
- CP: electrolyte imbalances (specify)
- Altered nutrition
- Ineffective breathing patterns