Objective #1 Explain factors that promote the normal reg. of BG in health

Normal insulin metabolism

- Produced by the β cells
 - Islets of Langerhans
- Released continuously into bloodstream in small increments with larger amounts released after food intake
- Stabilizes glucose range to 70 to 120 mg/dl
- Average daily secretion 0.6 units/kg body weight
BG Homeostasis

- **High Blood Glucose**
 - Pancreas releases insulin
 - Cells take up Glucose from Blood
 - Blood Glucose Falls

- **Low Blood Glucose**
 - Pancreas releases glucagon
 - Liver breaks down glycogen
 - Liver produces glycogen from Blood
 - Blood Glucose Rises

Glucose Regulation

- **Insulin**
 - Decreases glucose in the bloodstream
 - Insulin ↑ after a meal
 - Stimulates storage of glucose as glycogen in liver and muscle
 - Inhibits gluconeogenesis
 - Enhances fat deposition
 - ↑ Protein synthesis
 - Promotes glucose transport from bloodstream across cell membrane to cytoplasm of cell

Glucose Regulation

- **Stress**
 - Emotional and physical can increase BG levels
- **Medications**
 - Can potentiate hypo/hyper glycemic effects
- **Exercise**
- **Counterregulatory hormones**
 - Oppose effects of insulin
 - Increase blood glucose levels
 - Provide a regulated release of glucose for energy
 - Help maintain normal blood glucose levels
 - Examples
 - Glucagon, epinephrine, growth hormone, cortisol

Obj#2 factors that influence glucose regulation
Diabetes Mellitus

- A chronic multisystem disease related to
 - Abnormal insulin production
 - Impaired insulin utilization
 - Or both

Diabetes Mellitus

- Leading cause of
 - End-stage renal disease
 - Adult blindness
 - Nontraumatic lower limb amputations
- Major contributing factor
 - Heart disease
 - Stroke

Diabetes Mellitus

- 73% of adults with diabetes have hypertension
- 20.8 million people with diabetes in the US
- 41 million people with prediabetes
Diabetes Mellitus
Etiology and Pathophysiology

- Two most common types
 - Type 1
 - Type 2
- Other types
 - Gestational
 - Prediabetes
 - Secondary diabetes

Type 1 (Immune-mediated) Diabetes Mellitus

- Formerly known as “juvenile onset” or “insulin dependent” diabetes
- Most often occurs in people under 30 years of age
- Peak onset between ages 11 and 13

**Type 1 Diabetes Mellitus
Etiology and Pathophysiology**

- End result of long-standing process
 - Progressive destruction of pancreatic β cells by body’s own T cells
 - Autoantibodies cause a reduction of 80% to 90% of normal β cell function before manifestations occur
Type 1 Diabetes Mellitus
Etiology and Pathophysiology

• Causes
 – Theories link cause to single/ combination of these factors
 – Genetic
 – Autoimmune
 – Viral
 – Environmental

Onset of Disease

• Long preclinical period
• Antibodies present for months to years before symptoms occur
• Manifestations develop when pancreas can no longer produce insulin
 – Rapid onset of symptom
 – Will require exogenous insulin to sustain life

Clinical Manifestation

• History of recent, sudden, weight loss
• Classic symptoms
 – Polydipsia
 – Polyuria
 – Polyphagia
• Weight loss
• Weakness
• Fatigue
Clinical Manifestation
Type 1
Lack of insulin results in:
- Glucose molecules accumulate = hyperglycemia
 - which causes hyperosmolality (drawing H2O from the intracellular spaces into circulation)
 - The increased blood vol. increases renal blood flow
 - Acting as an osmotic diuretic
 » INCREASES URINE OUTPUT = POLYURIA

Clinical Manifestation type 1 continued...
- When the BG level exceeds the renal threshold for glucose: (about 180mg/dL)
 - Glucose is excreted in the urine - glucosuria
- The decrease in intracellular vol. & the increased urinary output cause dehydration
 - Thirst sensors are activated causing pt to drink increased amts of fluid = POLYDIPSIA

Clinical Manifestation type 1 continued
- Because glucose cannot enter the cell without insulin, energy production decreases
 - Stimulates hunger
 - Person wants/eats more food = POLYPHAGIA
Clinical Manifestations continued

- Weight loss
 - acute - loss of H2O, glycogen, triglyceride stores
 - chronic - muscle mass
- Blurred vision
 - effect of hyperosmolar fluid on lenses & retina
- Fatigue, Malaise & Dizziness
 - fluid volume & K+, postural hypotension,
 - protein catabolism

Type 2 Diabetes Mellitus

- Most prevalent type of diabetes
- Over 90% of patients with diabetes
- Usually occurs in people over 35 years of age
- 80% to 90% of patients are overweight

Type 2 Diabetes

- Prevalence increases with age
- Genetic basis
- Greater in some ethnic populations
 - Increased rate in African Americans, Asian Americans, Hispanic Americans, and Native Americans
 - Native Americans and Alaskan Natives: Highest rate of diabetes in the world
Type 2 Diabetes Mellitus

Etiology and Pathophysiology

- Pancreas continues to produce some endogenous insulin
- Insulin produced is either insufficient or poorly utilized by tissues

Type 2 Diabetes Mellitus

Etiology and Pathophysiology

- Obesity (abdominal/visceral)
 - Most powerful risk factor
- Genetic mutations
 - Lead to insulin resistance
 - Increased risk for obesity
 - http://cosmos.bcst.yahoo.com/up/player/popper?cl=7492540

Type 2 Diabetes

Etiology and Pathophysiology

Major metabolic abnormalities

1. Insulin resistance
 - Body tissues do not respond to insulin
 - Insulin receptors either unresponsive or insufficient in number
 - Results in hyperglycemia
2. Pancreas ↓ ability to produce insulin
 - β cells fatigued from compensating
 - β-cell mass lost
3. Inappropriate glucose production from liver
 - Liver’s response of regulating release of glucose is haphazard
 - Not considered a primary factor in development of type 2
Type 2 Diabetes
Etiology and Pathophysiology

- Individuals with metabolic syndrome ("Syndrome X") are at increased risk for type 2:
 - Cluster of abnormalities that increase risk for cardiovascular disease and diabetes
 - Elevated insulin levels, ↑ triglycerides & LDLs, ↓ HDLs, hypertension
 - Risk factors
 - Central obesity, sedentary lifestyle, urbanization, certain ethnicities

Type 2 Diabetes Mellitus
Onset of Disease

- Gradual onset
- Person may go many years with undetected hyperglycemia
- Osmotic fluid/electrolyte loss from hyperglycemia may become severe
 - Hyperosmolar coma

Clinical Manifestations
Type 2 Diabetes Mellitus

- Nonspecific symptoms
 - May have classic symptoms of type 1
- Fatigue
- Recurrent infections
- Recurrent vaginal yeast infections (Candida)
- Prolonged wound healing
- Visual changes
Prediabetes

- Known as impaired glucose tolerance (IGT) or impaired fasting glucose (IFG)
- IGT: Fasting glucose levels higher than normal (>100 mg/dl, but <126 mg/dl)
- IFG: 2-hour plasma glucose higher than normal (between 140 and 199 mg/dl)

Prediabetes

- Not high enough for diabetes diagnosis
- Increase risk for developing type 2 diabetes
- If no preventive measure taken—usually develop diabetes within 10 years
- Long-term damage already occurring
 - Heart, blood vessels
- Usually present with no symptoms
- Must watch for diabetes symptoms
 - Polyuria
 - Polyphagia
 - Polydipsia

Gestational Diabetes

- Develops during pregnancy
- Detected at 24 to 28 weeks of gestation
- Usually glucose levels back to normal at 6 weeks postpartum
- Increased risk for cesarean delivery, perinatal death, and neonatal complications
- Increased risk for developing type 2 in 5 to 10 years
- Therapy: First nutritional, second insulin
Diabetes Mellitus

Diagnostic Studies

• Three methods of diagnosis
 – Fasting plasma glucose level >126 mg/dl
 – Random or casual plasma glucose measurement ≥ 200 mg/dl plus symptoms
 – Two-hour OGTT level ≥ 200 mg/dl using a glucose load of 75g-100 g

• Hemoglobin A1C test (also called glycosylated hemoglobin)
 – Useful in determining glycemic levels over time
 – Not diagnostic but monitors success of treatment
 – Shows the amount of glucose attached to hemoglobin molecules over RBC life span
 • 90 to 120 days
 • Ideal goal
 • ADA ≤ 7.0%
 • American College of Endocrinology < 6.5%
 – Normal A1C reduces risk of retinopathy, nephropathy, and neuropathy

Diabetes Mellitus

Chronic Complications

• Angiopathy
 – Macrovascular
 • Diseases of large and medium-sized blood vessels
 – Heart, Cerebral vascular, Peripheral vascular
 • Patients with diabetes should be screened for dyslipidemia at diagnosis
 • Tight glucose control may delay atherosclerotic process
 • Risk factors
Diabetes

Chronic Complications

• Angiopathy (cont’d)
 – **Microvascular**
 • Result from thickening of vessel membranes in capillaries and arterioles
 – In response to chronic hyperglycemia
 • Is specific to diabetes unlike macrovascular
 – Areas most noticeably affected
 • Eyes (retinopathy)
 • Kidneys (nephropathy)
 • Skin (dermopathy)
 – Clinical manifestations usually appear after 10 to 20 years of diabetes

Diabetes

Chronic Complications

• Diabetic retinopathy
 – Microvascular damage to retina
 – Most common cause of new cases of blindness in people 20 to 74 years
 – Must have annual dilated eye examinations

Diabetes

Chronic Complications

• Diabetic retinopathy (cont’d)
 – Nonproliferative
 • Most common form
 • Partial occlusion of small blood vessels in retina
 – Causes development of microaneurysms
 – Capillary fluid leaks out
 » Retinal edema and eventually hard exudates or intraretinal hemorrhages occur
Diabetes
Chronic Complications

- Diabetic retinopathy (cont’d)
 - Proliferative
 - Most severe form
 - Involves retina and vitreous
 - When retinal capillaries become occluded
 - Body forms new blood vessels
 - Vessels are extremely fragile and hemorrhage easily
 - Produce vitreous contraction
 - Retinal detachment can occur

- Diabetic nephropathy
 - Associated with damage to small blood vessels that supply the glomeruli of the kidney
 - Leading cause of end-stage renal disease
 - Yearly screening
 - Microalbuminuria in urine
 - Serum creatinine
 - Critical factors for prevention/delay
 - Tight glucose control
 - Blood pressure management
 - Angiotensin-converting enzyme (ACE) inhibitors
 - Used even when not hypertensive

- Diabetic neuropathy
 - 60% to 70% of patients with diabetes have some degree of neuropathy
 - Nerve damage due to metabolic derangements of diabetes
 - Sensory versus autonomic neuropathy
Diabetes

Chronic Complications

• Diabetic neuropathy (cont’d)
 – Sensory
 • Treatment
 – Tight blood glucose control
 – Drug therapy
 » Topical creams
 » Tricyclic antidepressants
 » Selective serotonin and norepinephrine reuptake inhibitors
 » Antiseizure medications

• Diabetic neuropathy (cont’d)
 – Sensory neuropathy
 • Distal symmetric
 – Most common form
 – Affects hands and/or feet bilaterally
 – Characteristics include
 » Loss of sensation, abnormal sensations, pain, and paresthesias

• Diabetic neuropathy (cont’d)
 – Sensory
 • Usually worse at night
 • Foot injury and ulcerations can occur without the patient having pain
 • Can cause atrophy of small muscles of hands/feet
Diabetes
Chronic Complications

• Diabetic neuropathy (cont’d)
 – Autonomic
 • Can affect nearly all body systems
 – Complications
 – Gastroparesis
 » Delayed gastric emptying
 – Cardiovascular abnormalities
 – Sexual function
 – Neurogenic bladder

• Complications of foot and lower extremity
 – Foot complications
 • Most common cause of hospitalization in diabetes
 • Result from combination of microvascular and macrovascular diseases
 – Risk factors
 • Sensory neuropathy
 • Peripheral arterial disease
 – Other contributors
 • Smoking
 • Clotting abnormalities
 • Impaired immune function
 • Autonomic neuropathy

• Integumentary complications
 – Acanthosis nigricans
 • Dark, coarse, thickened skin
 – Necrobiosis lipoidica diabetorum
 • Associated with type 1
 • Red-yellow lesions
 • Skin becomes shiny, revealing tiny blood vessels
 – Granuloma annulare
 • Associated mainly with type 1
 • Forms partial rings of papules
Diabetes

Chronic Complications

- Infection
 - Diabetics more susceptible to infections
 - Defect in mobilization of inflammatory cells
 - Loss of sensation may delay detection
 - Treatment must be prompt and vigorous

Acute Complications

- Diabetic ketoacidosis (DKA)
- Hyperosmolar hyperglycemic syndrome (HHS)
- Hypoglycemia

DKA

- Caused by profound deficiency of insulin
- Characterized by
 - Hyperglycemia
 - Ketosis
 - Acidosis
 - Dehydration
- Most likely occurs in type 1 diabetic
- Occurs in absence of exogenous insulin
- Life-threatening condition
- Results in metabolic acidosis
Diabetes

Acute Complications

• DKA (cont’d)
 – When supply of insulin insufficient
 • Glucose cannot be properly used for energy
 • Body breaks down fats stores
 – Ketones are by-products of fat metabolism
 – Precipitating factors
 • Illness
 • Infection
 • Inadequate insulin dosage
 • Undiagnosed type 1
 • Poor self-management
 • Neglect

• Signs and symptoms
 • Lethargy/weakness (early sympt), dehydration
 • Abdominal pain
 • N/V
 • Kussmaul respirations
 – Rapid deep breathing
 – Attempt to reverse metabolic acidosis
 – Sweet fruity odor
 – Serious condition
 • Must be treated promptly
 – Depending on signs/symptoms
 • May or may not need hospitalization

• Laboratory findings
 – Blood glucose > 300 mg/dl
 – Arterial blood pH below 7.30
 – Serum bicarbonate level <15 mEq/L
 – Ketones in blood and urine
 – Correct fluid/electrolyte imbalance
 • IV infusion 0.45% or 0.9% NaCl
 • When blood glucose levels approach 250 mg/dl
 – 5% dextrose added to regimen
 – Prevent hypoglycemia
 • Potassium replacement
 • Sodium bicarbonate
 – If pH <7
Diabetes

Acute Complications

• DKA (cont’d)
 – Airway management
 • O2 administration
 – Insulin therapy
 • Withheld until fluid resuscitation has begun
 • Bolus followed by insulin drip

• Hyperosmolar hyperglycemic syndrome (HHS)
 – Life-threatening syndrome
 – Less common than DKA
 – Often occurs in patients over 60 years with type 2
 – Patient has enough circulating insulin so ketoacidosis does not occur
 – Produces fewer symptoms in earlier stages
 – Neurologic manifestations occur due to ↑ serum osmolality

• HHS (cont’d)
 – Usually history of
 • Inadequate fluid intake
 • Increasing mental depression
 • Polyuria
 – Laboratory values
 • Blood glucose >400 mg/dl
 • Increase in serum osmolality
 • Absent/minimal ketone bodie
 – Therapy similar to DKA
 • Except HHS requires greater fluid replacement
Diabetes
Acute Complications

• Nursing management DKA/HHS
 – Patient closely monitored
 • Administration
 – IV fluids
 – Insulin therapy
 – Electrolytes
 • Signs potassium imbalance
 • Cardiac monitoring
 • Vital signs
 • Level of consciousness

Diabetes
Acute Complications

• Hypoglycemia
 – Low blood glucose
 – Occurs when
 • Too much insulin in proportion to glucose in the blood
 • Blood glucose level less than 70 mg/dl
 – Common manifestations
 • Confusion
 • Irritability
 • Diaphoresis
 • Tremors
 • Hunger

Diabetes
Acute Complications

• Hypoglycemia (cont’d)
 – Common manifestations
 • Weakness
 • Visual disturbances
 • Can mimic alcohol intoxication
 – Untreated can progress to loss of consciousness, seizures, coma, and death
Diabetes
Acute Complications

• Hypoglycemia (cont’d)
 – Hypoglycemic unawareness
 • Person does not experience warning
 signs/symptoms, increasing risk for decreased
 blood glucose levels
 – Related to autonomic neuropathy
 – Causes
 • Mismatch in timing
 – Food intake and peak action of insulin or oral
 hypoglycemic agents

 – At the first sign
 • Check blood glucose
 – If <70 mg/dl, begin treatment
 – If >70 mg/dl, investigate further for cause of
 signs/symptoms
 – If monitoring equipment not available, treatment should
 be initiated

 – Treatment
 • If alert enough to swallow
 – 15 to 20 g of a simple carbohydrate
 » 4 to 6 oz fruit juice
 » Regular soft drink
 – Avoid foods with fat
 » Decrease absorption of sugar
 – Do not overtreat
 – Recheck blood sugar 15 minutes after treatment
 – Repeat until blood sugar >70 mg/dl
 – Patient should eat regularly scheduled meal/snack to
 prevent rebound hypoglycemia
 – Check blood sugar again 45 minutes after treatment

Diabetes

Acute Complications

• Hypoglycemia (cont’d)
 – Treatment
 • If no improvement after 2 or 3 doses of simple carbohydrate or pt not alert enough to swallow
 • Administer 1 mg of glucagon IM or subcutaneously
 – Side effect: Rebound hypoglycemia
 • Have patient ingest a complex carbohydrate after recovery
 • In acute care settings
 – 20 to 50 ml of 50% dextrose IV push

Nursing Management

Nursing Assessment

• Past health history
 – Viral infections
 – Medications
 – Recent surgery
• Positive health history
• Obesity

• Weight loss
• Thirst
• Hunger
• Poor healing
• Kussmaul respirations
Nursing Management

Nursing Diagnoses
- Ineffective therapeutic regimen management
- Risk for injury
- Risk for infection
- Powerlessness
- Imbalanced nutrition: More than body requirements
- Fluid volume deficit
- Tissue perfusion, altered
- Altered sexuality patterns

Nursing Management

Planning
- Overall goals
 - Active patient participation
 - Few or no episodes of acute hyperglycemic emergencies or hypoglycemia
 - Maintain normal blood glucose levels
 - Prevent or delay chronic complications
 - Lifestyle adjustments with minimal stress

Nursing Management

Nursing Implementation
- Health promotion
 - Identify those at risk
 - Routine screening for overweight adults over age 45
 - FPG is preferred method in clinical settings
Nursing Management

Nursing Implementation

• Acute intervention
 – Hypoglycemia
 – Diabetic ketoacidosis
 – Hyperosmolar hyperglycemic nonketotic syndrome

Nursing Management

Nursing Implementation

• Acute intervention (cont’d)
 – Stress of illness and surgery
 • ↑ Blood glucose level
 • Continue regular meal plan
 • ↑ Intake of noncaloric fluids
 • Continue taking oral agents and insulin
 • Frequent monitoring of blood glucose
 – Ketone testing if glucose > 240 mg/dl

Nursing Management

Nursing Implementation

• Acute intervention (cont’d)
 – Stress of illness and surgery
 • Patients undergoing surgery or radiologic procedures requiring contrast medium should hold their metformin day of surgery and 48 hours
 – Begun after serum creatinine has been checked and is normal
Nursing Management
Nursing Implementation

• Ambulatory and home care
 – Overall goal is to enable patient or caregiver
to reach an optimal level of independence
 – Insulin therapy and oral agents
 – Personal hygiene

Nursing Management
Nursing Implementation

• Ambulatory and home care (cont’d)
 – Insulin therapy and oral agent
 • Education on proper administration, adjustment and side
effects
 • Assessment of patient’s response to therapy
 – Personal hygiene
 • Regular bathing with emphasis on foot care
 • Daily brushing/flossing
 – Dentist should be informed about diabetes diagnosis

Nursing Management
Nursing Implementation

• Ambulatory and home care (cont’d)
 – Medical identification and travel card
 • Must carry identification indicating diagnosis of diabetes
 – Patient and family teaching
 • Educate on disease process, physical activity, medications,
monitoring blood glucose, diet, resources
 • Enable patient to become most active participant in his/her
care
Nursing Management

Evaluation

• Knowledge
• Balance of nutrition
• Health benefits
• No injuries

Diabetes Mellitus

Collaborative Care

• Goals of diabetes management
 – Decrease symptoms
 – Promote well-being
 – Prevent acute complications
 – Delay onset and progression of long-term complications

Drug Therapy

Insulin

• Exogenous insulin
 – Insulin from an outside source
 – Required for type 1 diabetes
 – Prescribed for patient with type 2 diabetes who cannot control blood glucose by other means

• Types of insulin
 – Human insulin
 • Only type used today
 • Prepared through genetic engineering
Drug Therapy

Insulin

- Regimen that closely mimics endogenous insulin production is basal-bolus
 - Long-acting (basal) once a day
 - Rapid/short-acting (bolus) before meals

Insulin preparations

- Rapid-acting (bolus) Lispro, aspart, glulisine
 - Onset 0 to 15 minutes
 - Peak 60-90 min
 - Duration 3-4 hours

- Short-acting (bolus) Regular
 - Onset 30 to 60 minutes
 - Peak 2-3 hours
 - Duration 3-6 hours

- Intermediate Acting NPH or Lente
 - Cloudy
 - Vial must be rolled or rocked a min of 20 times
 - Onset 2-4 hours
 - Peak 4-10
 - Duration 10-16

- Long-acting (basal) glargine (Lantus), detemir (Levemir)
 - Injected once a day at bedtime or in the morning
 - Onset 1-2 hours
 - Duration 24+ hours
 - No peak action-released steadily and continuously
 - Cannot be mixed with any other insulin or solution
Drug Therapy

Insulin

- Storage of insulin
 - Do not heat/freeze
 - In-use vials may be left at room temperature up to 4 weeks
 - Extra insulin should be refrigerated
 - Avoid exposure to direct sunlight
- Administration of insulin
 - Cannot be taken orally
 - Subcutaneous injection for self-administration
 - IV administration

Drug Therapy

Insulin

- Administration of insulin (cont’d)
 - Fastest absorption from abdomen, followed by arm, thigh, buttck
 - Abdomen
 - Preferred site
 - Rotate injections within one particular site
 - Do not inject in site to be exercised

Drug Therapy

Insulin

- Administration of insulin (cont’d)
 - Do not inject in site to be exercised
 - Usually available as U100
 - 1 ml contains 100 units of insulin
 - No alcohol swab on site needed before injection
 - washing with soap and rinsing with water is adequate
 - Do not recap needle
 - 45- to 90-degree angle depending on fat thickness of patient
 - Insulin pens preloaded with insulin now available
Drug Therapy

Insulin

- Insulin pump
 - Continuous subcutaneous infusion
 - Battery operated device
 - Connected via plastic tubing to a catheter inserted into subcutaneous tissue in abdominal wall
 - Potential for tight glucose control

Inhaled Insulin

- Exubera
 - Rapid-acting, dry powder inhaled through mouth into lungs
 - Not recommended for patients with asthma, bronchitis, or emphysema

Problems with insulin therapy

- Hypoglycemia
- Allergic reactions
- Lipodystrophy
- Somogyi effect
- Dawn phenomenon
Drug Therapy

Insulin

- Problems with insulin therapy
 - Somogyi effect
 - Rebound effect in which an overdose of insulin causes hypoglycemia
 - Usually during hours of sleep
 - Counterregulatory hormones released
 - Rebound hyperglycemia and ketosis occur

Drug Therapy

Insulin

- Problems with insulin therapy
 - Dawn phenomenon
 - Characterized by hyperglycemia present on awakening in the morning
 - Due to release of counterregulatory hormones in predawn hours
 - Growth hormone/cortisol possible factors

Drug Therapy

Oral Agents

- Not insulin
- Work to improve mechanisms by which insulin and glucose are produced and used by the body
- Work on three defects of type 2 diabetes
 - Insulin resistance
 - Decreased insulin production
 - Increased hepatic glucose production
Drug Therapy
Oral Agents

• Sulfonylureas
 – ↑ Insulin production from pancreas
 – ↓ Chance of prolonged hypoglycemia
 – 10% experience decreased effectiveness after prolonged use
 – Examples
 • Glipizide (Glucotrol)
 • Glimepiride (Amaryl)

• Meglitinides
 – Increase insulin production from pancreas
 – Taken 30 minutes before each meal up to time of meal
 – Should not be taken if meal skipped
 – Examples
 • Repaglinide (Prandin)
 • Nateglinide (Starlix)
Drug Therapy
Oral Agents

- Biguanides
 - Reduce glucose production by liver
 - Enhance insulin sensitivity at tissues
 - Improve glucose transport into cells
 - Does not promote weight gain
 - Example
 • Metformin (Glucophage)

Drug Therapy
Oral Agents

- α-Glucosidase inhibitors
 - “Starch blockers”
 • Slow down absorption of carbohydrate in small intestine
 - Example
 • Acarbose (Precose)

Drug Therapy
Oral Agents

- Thiazolidinediones
 - Most effective in those with insulin resistance
 - Improves insulin sensitivity, transport, and utilization at target tissues
 - Examples
 • Pioglitazone (Actos)
 • Rosiglitazone (Avandia)
Drug Therapy
Other Agents

• Amylin analog
 – Hormone secreted by \(\beta \) cells of pancreas
 – Co-secreted with insulin
 – Indicated for type 1 and type 2 diabetics
 – Administered subcutaneously
 • Thigh or abdomen
 – Slows gastric emptying, reduces postprandial glucagon secretion, increases satiety
 – Example
 • Pramlintide (Symlin)

Drug Therapy
Other Agents

• Incretin mimetic
 – Synthetic peptide
 – Stimulates release of insulin from \(\beta \) cells
 – Subcutaneous injection
 – Suppresses glucagon secretion
 – Reduces food intake
 – Slows gastric emptying
 – Not to be used with insulin
 – Example
 • Byetta

Drug Therapy
Other Agents

• \(\beta \)-Adrenergic blockers
 – Mask symptoms of hypoglycemia
 – Prolong hypoglycemic effects of insulin

• Thiazide/loop diuretics
 – Can potentiate hyperglycemia
 • By inducing potassium loss
Diabetes

Nutritional Therapy

- Cornerstone of care for person with diabetes
- Most challenging for many people
- Recommended that diabetes nurse educator and registered dietitian with diabetes experience be members of team

Diabetes

Nutritional Therapy

- American Diabetes Association (ADA)
 - Guidelines indicate that within context of an overall healthy eating plan, person with diabetes can eat same foods as person who does not have diabetes
 - Overall goal
 - Assist people in making changes in nutrition and exercise habits that will lead to improved metabolic control

Diabetes

Nutritional Therapy

- Type 1 diabetes mellitus
 - Meal plan based on individual’s usual food intake and is balanced with insulin and exercise patterns
 - Insulin regimen managed day to day
Diabetes

Nutritional Therapy

• Type 2 diabetes mellitus
 – Emphasis based on achieving glucose, lipid, and blood pressure goals
 – Calorie reduction

Diabetes

Nutritional Therapy

• Food composition
 – Nutrient balance of diabetic diet is essential
 – Nutritional energy intake should be balanced with energy output

Diabetes

Nutritional Therapy

• Carbohydrates
 – Carbohydrates and monounsaturated fats should provide 45% to 65% of total energy intake
 – Carbohydrate diets are not recommended for diabetics

• Glycemic index (GI)
 – Term used to describe rise in blood glucose levels after consuming carbohydrate-containing food
 – Should be considered when formulating a meal plan
Diabetes

Nutritional Therapy

• Fats
 – No more than 20% to 35% of meal plan’s total calories
 • <7% from saturated fats, minimal trans fat
• Protein
 – Contribute <10% of total energy consumed
 – Intake should be significantly less than general population

• Alcohol
 – High in calories
 – No nutritive value
 – Promotes hypertriglyceridemia
 – Detrimental effects on liver
 – Can cause severe hypoglycemia

• Diet teaching
 – Dietitian initially provides instruction
 – Should include patient’s family and significant others
 – USDA MyPyramid guide
 • An appropriate basic teaching tool
 – Plate method
 • Helps patient visualize the amount of vegetable, starch, and meat that should fill a 9-inch plate
Diabetes

Exercise

• Exercise
 – Essential part of diabetes management
 – ↑ Insulin receptor sites
 – Lowers blood glucose levels
 – Contributes to weight loss
 – Should be individualized
 – Monitor blood glucose levels before, during, and after exercise

Diabetes

Exercise

• Exercise (cont’d)
 – Several small carbohydrate snacks can be taken every 30 minutes during exercise to prevent hypoglycemia
 – Best done after meals
 – Exercise plans should be started
 • After medical clearance
 • Slowly with gradual progression

Monitoring Blood Glucose

• Self-monitoring of blood glucose (SMBG)
 – Enables patient to make self-management decisions regarding diet, exercise, and medication
Monitoring Blood Glucose

• Self-monitoring of blood glucose (SMBG) (cont’d)
 – Important for detecting episodic hyperglycemia and hypoglycemia
 – Patient training is crucial
 – Supplies immediate information about blood glucose levels

Diabetes

Pancreas Transplantation

• Pancreas transplants alone are rare
 – Usually kidney and pancreas transplants done together
• Eliminates need for exogenous insulin
• Can also eliminate hypoglycemia and hyperglycemia
• Used for patients with type 1 diabetes who also have
 – End-stage renal disease
 – Had, or plan to have, a kidney transplant

Diabetes

Perioperative Management

• Acute illness, injury, surgery
 – May evoke counterregulatory hormone response
 • Resulting in hyperglycemia
 – IV fluids and insulin given immediately before during and after surg when there is no oral intake
 – Surg or radiologic procedure that involve the use of a contrast medium
 • Hold metformin for procedure and 48hrs after
Diabetes
Sick Day Guidelines

• Monitor BG every 4 hours Call provider if >240mg/dl.
• Never omit medication or insulin
• Continue to take usual insulin dose or OHA
• Continue with regular meal plan
 – Substitute easily digested liquids or soft foods if solid not tolerated
• Call provider if unable to eat for more than 24hr or if vomiting/diarrhea last longer than 6hrs
• Test for ketones every 3-4 hours
 – Pt should report moderate to large ketone levels to provider
• Increase intake non caloric fluids such as broth water diet gelatin & other decaf beverages

Diabetes
Gerontologic Considerations

• Recognize limitations in physical activity, manual dexterity and visual acuity
• Education based on individual’s needs, using slower pace

Diabetes
Gerontologic Considerations

• Prevalence increases with age
• Hypoglycemia unawareness is more common
• Presence of delayed psychomotor function could interfere with treating hypoglycemia
• Must consider patient’s own desire for treatment and coexisting medical problems