Unit VII Fluids and Electrolytes

YouTube
- Fluid & Electrolytes Part 1 through 3 10” each Campbelliteaching
- Osmosis and Diffusion Part 1-4 10”
- Rec’d Acid-Base Balance Part 1,2, 3 davidlaw888 (ATI)

Fluid & Electrolytes
- Function of fluid
 - Transport of nutrients to & wastes from cells
 - Helps maintain normal body temp.
 - Lubricates & cushions
 - Facilitates digestion & elimination
 - Maintains vascular volume
 - Solvent for electrolytes

Fluid & Electrolytes
- Function of electrolytes
 - Body water regulation & osmolality
 - Acid-base balance
 - Enzyme activity
 - Neuromuscular activity

Fluid & Electrolytes
- Body fluid distribution
 - Water & electrolytes
 - 60% of weight (adult & children>2yrs.)
 - ICF – intracellular fluid = 40%
 - ECF – extracellular fluids = 20%
 - Intravascular 5%
 - Interstitial 15%

Electrolytes
- Plasma Cations += 154
 - Sodium (Na) 142
 - Potassium (K) 5
 - Calcium (Ca²⁺) 5
 - Magnesium (Mg²⁺) 2
- Plasma Anions -= 154
 - Chloride (Cl⁻) 104
 - Bicarbonate (HCO₃⁻) 26
 - Phosphate (HPO₄²⁻) 2
 - Sulfate (SO₄²⁻) 1
 - Organic acids & proteinate 22
- ICF Cations += 200
 - Potassium 150
 - Magnesium 40
 - Sodium 10
- ICF Anions -= 200
 - Phosphates
 - Sulfates (150)
 - Bicarbonate 10
 - Proteinate 40
Acid-Base Balance

- pH – H⁺ ion concentration in blood
- Hydrogen is a product of metabolism
- Normal pH 7.35 – 7.45
- Chemical buffer systems
 - Remove or release Hydrogen ions
 - ECF buffers – phosphates & plasma proteins
 - ICF buffers – phosphates, proteins, & Hemoglobin
 - Bicarbonate – Carbonic acid buffer system
 - Acid – donates H⁺ ions
 - Base – accepts H⁺ ions

Body Fluid Balance

- **Routes of Gains & Losses**
 - **Gains**
 - Food 800-1000ml
 - Fluid intake 1100-1400ml
 - Oxidative metabolism 300ml
 - **Losses**
 - Lungs 400ml
 - Skin 500-600ml
 - G.I tract 100-200
 - Small intestine absorbs fluid
 - Kidneys – 1200-1500

Fluid Regulation

- Osmolality (Tonicity) = concentration
- Iso-osmolar, hypo-osmolar, hyperosmolar
- Normal serum osmolality = 280-295mOsm/kg of H₂O

Fluid Regulation - Osmosis

- Osmosis
 - Osmotic pull by particles /unit of water (Osmolality)
 - Movement of fluid from area of < concentration to area of > concentration

- Hypotonic
- Hypo-osmolar
- Semi permeable membrane
- Hypertonic
- Hyperosmolar
- Semi permeable membrane
Fluid Regulation – Kidneys

- Regulation of ECF volume & osmolality by selective retention & excretion
- Hydrostatic pressure
- Filtration = excretion of urine/waste products
- GFR = 125ml/minute
- Normal urine output – 20-30ml/hr

Renin-Angiotensin-Aldosterone System

- Renin secretion
- Angiotensin converted to Angiotensin I
- Angiotensin I converted to Angiotensin II

Aldosterone

- Angiotensin II – adrenals* secrete aldosterone

Kidneys retain Na & H₂O

Antidiuretic Hormone (ADH)

- Hypothalamus Osmoreceptors

- ADH
- Kidney
- Urine volume
- Urine concentration

- Plasma Osmolality

Thirst mechanism

- Thirst Center
- Plasma Omolality
- Plasma Volume
- Dec. Potassium or Inc. Sodium
- Dry oropharyngeal Mucous membranes
- Psychological factors

Renin-Angiotensin-Aldosterone System

- BP or Na
- Glomerulus
- Renin secretion
- Liver
- Angiotensin converted to Angiotensin I
- Lungs
- Angiotensin I converted to Angiotensin II
- Adrenals produce aldosterone

Aldosterone

- Angiotensin II – adrenals* secrete aldosterone

Kidneys retain Na & H₂O

Antidiuretic Hormone (ADH)

- Hypothalamus Osmoreceptors

- ADH
- Kidney
- Urine volume
- Urine concentration

- Plasma Osmolality
Electrolyte Balancing Act

- Active transport
 - ATP – solutes move from area of < concentration to areas of > concentration
- The body expands energy to maintain the extracellular Na and the intracellular K by means of cell membrane Sodium – Potassium pump.

Sodium Balance

- Normal serum sodium (Na+)
 - 135 – 145 mEq/L (Cl –95 - 108)
- 95% in ECF
- Primary role
 - Control H2O distribution & volume
- Normal intake 50-90mEq as NaCl
- Kidney conserves or excretes Na prn

Potassium (K+)

- Function
 - Regulation of ICF osmolality
 - Promotes transmission/conduction of nerve impulses
 - Promotes contraction of skeletal, cardiac, & smooth muscle
 - Maintenance of acid-base balance

Potassium (K+)

- Major intracellular cation–150mEq/L
- Normal se levels – 3.5–5mEq/L
- Poor storage – daily requirement needs
- Kidneys excrete 80-90% of K+

Dietary Sources of K

- Meats
- Vegetables
- Fruits
- Dried fruits, nuts, seeds
- Chocolate

Calcium

- Se Ca++
 - Total 8.5 –10.5 mg/dL (100ml)
 - Bound with protein & ionized
 - Ionized – 4 – 5 mEq/L
 - 99% in bones & teeth
Calcium - Function
- Transmission & conduction of nerve impulses
- Stimulates skeletal, smooth, & cardiac muscle contraction
- Promotes coagulation
- Bone & teeth formation
- Hormone secretion

Calcium – Regulation
- Vitamin D
- Phosphates
 - PO_3^-
- Inverse relationship with Calcium
- PTH
- Calcitonin

Magnesium
- Distribution
 - 2/3 found in bones
 - 1/3 found in ICF
 - 1% in ECF
- Absorbed in small bowel
- Excreted by kidneys
- Function
 - Intracellular metabolism
 - Neuromuscular - similar to calcium

Bicarbonate
- HCO_3^-
- Major chemical buffer in ECF & ICF
- Regulated by kidneys
- Arterial measurement
 - 20-26 mEq/L
- Venous measurement
 - CO_2 content 24-30 mEq/L

ABG Values
- pH 7.35 – 7.45
 - <7.35
 - >7.45
- PaCO$_2$ 35-45 mmHg
 - <35 (hypocapnia)
 - >45 (hypercapnia)
- HCO$_3$ 20-26 mEq/L
 - <20 (acidosis)
 - >26 (alkalosis)

Acid-Base
Acid-Base - Acidosis

Gain of acid:
\[H_2CO_3 \rightarrow H_2O + CO_2 \]

\[H_2CO_3 \rightarrow H + HCO_3^- \]

Death

Gain of acid:
\[H_2CO_3 \rightarrow H_2O + CO_2 \]

Loss of base:
\[HCO_3^- \rightarrow H_2CO_3 \]

Loss of base:
\[HCO_3^- \rightarrow H_2CO_3 \]

Death

Metabolic Acidosis – Mechanism
- Accumulation of fixed acids
 - Lactic acidosis
 - Renal failure
 - Ketoacidosis
 - Ingestion
 - ASA
 - Antifreeze
- Loss of base
 - Renal tubular acidosis
 - Carbonic anhydrase inhibitors
 - Diamox
 - Diarrhea

Metabolic Acidosis - Symptoms
- pH \(\downarrow \)
- HCO_3^- \(\downarrow \)
- Hyperventilation (PaCO_2 \(\downarrow \)) compensatory
- Lethargy/weakness
- Hyperkalemia
- Hypotension & myocardial depression

Respiratory Acidosis – Causes
- Inadequate excretion of CO_2
- Acute or chronic respiratory alterations
- Risk factors favoring hypoventilation
 - Obesity
 - Tight binders/dressings
 - Postoperative pain
 - Abdominal distention

Respiratory Acidosis – Symptoms
- ABG’s
 - pH \(\downarrow \)
 - PaCO_2 \(\uparrow \)
 - HCO_3^- \(\uparrow \) (\(\uparrow \) compensatory)
- Headache
- Hypertension
- Hyperkalemia
- Hypoxemia
Acid-Base

Acidosis 7.35
Alkalosis 7.45
Death 7.80

Loss of acid

H₂CO₃

1 part acid

HCO₃⁻ 1.2mEq/L

20 parts base

24mEq/L

H₂O + CO₂ → H₂CO₃ → H + HCO₃⁻

Metabolic Alkalosis - Causes

- Fixed acid loss
- Vomiting/G.I suction
- Hypokalemia
- Excess bicarbonate intake
- Alkali ingestion
- I.V. NaHCO₃
- Excess bicarbonate reabsorption

Metabolic Alkalosis - Symptoms

- ABG’s
 - pH ↑
 - HCO₃⁻ ↑
 - PaCO₂ ↑ (↑ compensatory)
- Hypoventilation
- Decreased LOC
- Hypokalemia
- Hypochloremia
- Tetany/paresthesia

Respiratory Alkalosis

- Causes relate to hyperventilation
 - Anxiety
 - High fever
 - Thyrotoxicosis
 - Hypoxemia
 - Salicylate intoxication (early)
Respiratory Alkalosis - Symptoms

- ABG's
 - pH ↑
 - PaCO2 ↓
 - HCO3 \(\rightarrow \) (\(\downarrow \) compensated)
- Lightheadedness/confusion
- Inability to concentrate
- Paresthesia
- Palpitations
- Dry mouth

Influencing Factors in Total Body Water

- **Body fat**
 - Fat cells contain less water
- **Sex**
 - Women less body fluid than men
- **Age**
 - Infants
 - 70-80% body weight (Adult 60%)
 - 50% extracellular (Adult 20%)
 - Older adult
 - \(\downarrow \) % of body weight

Influencing Factors

- **Elderly**
 - Diminished thirst response
 - Altered ADH response
 - Decreased ability to concentrate urine
 - Chronicity
 - Deblitation
 - Changes in cognition
 - Infant - child, more risk for dehydration, esp. if vomiting and diarrhea

Risk Factors

- Compromised regulatory mechanisms
- Congestive heart failure
- Renal failure
- Cirrhosis
- Steroid excess
- ADH stimulation
- Excess sodium containing fluids/foods
- IV solutions

Alterations in fluid intake & output

- Medications
- G.I.
 - Dysphagia
 - Nausea/vomiting
 - Diarrhea
 - Insufficient intake
 - G.I. suction
- Restraints

- Skin
 - Diaphoresis
 - Wounds/burns
- Fever
 - Increase in metabolism
 - Tachypnea
 - Blood loss

History and Interview

- Age
- Acute illness
- Respiratory/Cardiovascular disorders
- Chronic illness
- Renal / G.I. disorders
- Environment
- Diet/ lifestyle
- Medications
Normal Findings

- General
- VS
- Weight
- Intake & Output
- Urine
- Skin turgor
- Mucous membranes
- Thirst
- Edema
- Neck Veins
- Neuromuscular signs

Diagnostic Tests

- Serum electrolytes
 - Sodium
 - Potassium
 - Chloride
 - CO$_2$
 - Serum osmolality
 - ABG’s
 - Hematocrit
- BUN
- Creatinine
- BUN:creatinine ratio
- Specific gravity
- Urine osmolality

Isotonic Imbalance - Fluid Volume Deficit (FVD)

- Decrease in intravascular & interstitial fluids = hypovolemia
- Isotonic FVD
 - Equal water & lyte loss
 - Hemorrhage
 - Diaphoresis
 - Diuretics

Fluid Volume Deficit - Isotonic

- S&S
 - BP
 - Heart rate
 - Mucous membranes
 - Skin turgor
 - Weight
 - Venous filling
 - Urine output
 - LOC

Assessment - FVD - Symptoms

- Thirst
- Muscle weakness
- Decreased skin turgor
- Dry mucous membranes
- Soft & sunken eyeballs
- Decreased temperature if no sepsis
- Tachycardia
- Narrowed pulse pressure
- Postural hypotension
- Decreased urinary output, weight loss
- Neurological changes – apprehension, headache, confusion

FVD - Diagnostic Tests

- Serum Na$^+$ => or ↑ 145
- BUN ↑ >25
- Hematocrit ↑ >50%
- Specific gravity ↑ > 1.025

Increased solute to solvent
Hemo-concentration
Extracellular Fluid Volume Excess (FVE)

- Abnormal fluid retention in intravascular & interstitial spaces
- Secondary to ↑ serum Na
- Sodium & Water retained in proportion

Isotonic Fluid Volume Excess

- Causes
 - Congestive heart failure
 - Renal failure
 - Excessive sodium intake
 - Increased serum aldosterone levels
 - Steroids

Isotonic Fluid Volume Excess

- S&S
 - Weight
 - Edema
 - BP
 - Urine output
 - Venous filling
 - Breath sounds

FVE – Manifestations

- Cardiovascular
 - B.P.
 - Pulse quality
 - Pitting edema
 - Sacral
 - Peripheral
 - Weight gain
 - Distended veins
 - S₂ heart sound

- Respiratory
 - Constant, irritating cough
 - Crackles (Rales)
 - Dyspnea
 - Cyanosis
 - Pleural effusion

- Neurological
 - LOC

FVE – Diagnostic Tests

- Serum sodium
- Hematocrit (% RBC’s in plasma)
- Urine specific gravity
- BUN

Osmolar Imbalances

- Dehydration
 - Hyperosmolar FVD
 - Water loss > lyte loss
 - Hypo-osmolar FVE
 - Water gain > lyte gain

- Water Excess
 - Hyperosmolar FVD
 - Water loss > lyte loss
 - Hypo-osmolar FVE
 - Water gain > lyte gain

NORMAL VOLUME

EXCESS VOLUME

Na 140mEq/L

ISOTONIC

FLUID

Na 140

Na 150

Na 140

Na <135
Hypo-osmolar Imbalance – H₂O excess

- Causes
 - Excessive amounts of hypotonic (hypo-osmolar)solutions
 - D₅W
 - 0.45% saline
 - Excessive intake of free water

Intracellular Fluid Volume Excess (ICFVE)

- Fluid shift from extracellular spaces to intracellular
- Due to serum hypo-osmolality
- Cellular edema

Effect of Na Imbalance on Cell

Hypernatremia:

Na > 145mEq/L

Cell shrinks as water is pulled out into ECF

Hyponatremia:

Na < 135mEq/L

Due to excess water gain or Na loss

Cell swells as water is pulled in from ECF
Hypernatremia – Symptoms
- S&S of FVE or FVD
- Thirst?
- Temperature?
- Mucous membranes?
- Restlessness, weakness with mild to moderate ↑Na
- Disorientation, delusions, hallucinations with severe ↑Na
- Lethargy, stupor, coma
- Muscle irritability and convulsions

Hyponatremia

Hyponatremia – Symptoms
- Relate to Na level
 - 120-125mEq/L
 - Nausea
 - Malaise
 - 115-120 mEq/L
 - Headache
 - Lethargy
 - Obtundation
 - <110-115 mEq/L
 - Seizures
 - Coma
- Volume status
 - ECF depletion
 - Weakness
 - Fatigue
 - Muscle cramps
 - Postural dizziness
- Lab data
 - Se Na?
 - Ua Na?
 - Se osmolality?

HYPOKALEMIA
- Serum K⁺ < 3.5 mEq/L
- Causes
 - Inadequate nutrient intake
 - G.I. Losses
 - Renal losses
 - Stress – increased cortisol levels
 - Steroids
 - Alkalosis

Hypokalemia – Symptoms
- Musculoskeletal
 - Weakness
 - Paralysis
 - Leg cramps
- G.I.
 - Ileus
 - Anorexia
 - Vomiting
- Respiratory
 - Respirations?
 - SOB
 - Apnea
- Renal
 - Polyuria
- Cardiovascular

Hyperkalemia Se K⁺ > 5.0 mEq/L
- Causes
 - Decreased potassium excretion
 - Oliguric renal failure
 - Potassium sparing diuretics
 - High potassium intake
 - Excess oral potassium supplements
 - Excessive or rapid IV K⁺ replacement
 - Shift of K out of cells
 - Acidosis, tissue trauma, malignant cell lysis (chemotherapy)
Hyperkalemia – Symptoms
- Cardiovascular
 - EKG changes
 - Dysrhythmias
 - Weakened contractility
 - Tachycardia then bradycardia
 - Cardiac arrest
- GI
 - Nausea
 - Intestinal colic
 - Hyperactive bowel sounds

Hyperkalemia - Symptoms
- Neuromuscular
 - Vague muscle weakness
 - Flaccid muscle paralysis
 - Paresthesia
- Renal
 - Oliguria
 - Anuria

Hypercalcemia – Causes
- Metastatic Cancer
- Immobilization
- Hyperparathyroidism
- Intake
 - Thiazide diuretics, Lithium
 - Excess intake of Ca^2+ antacids
 - Excess intake of Vitamins A or D

Hypercalcemia – Symptoms
- Neuromuscular weakness
- Renal
 - Polyuria (DI)
 - Hypercalcuria
- GI
 - N & V
 - ↓ peristalsis
 - Constipation
 - Cardiovascular
 - Impaired cerebral functioning

Hypocalcemia – Symptoms
- Neuromuscular
 - Tetany
 - ↓ threshold potential – less stimulus required for action potential
 - Hyperexcitability of motor & sensory nerves
 - Paresthesia
 - Trousseau’s sign
 - Chvostek’s sign

Hypermagnesemia – Symptoms
- Diminished neuromuscular transmission
- Decreased muscle function
- Hypotension
- Respiratory depression
- Cardiac arrest
Hypomagnesemia <1.8 mg/dL

Causes
- Losses from G.I tract
- Alcoholism
- Rapid administration of citrated blood
- Medications
 - Loop diuretics
 - Cisplatin

Nursing Diagnosis
- Fluid volume excess
- Fluid volume deficit
- Ineffective breathing pattern
- Impaired mobility
- Impaired skin integrity
- Altered oral mucous membranes

Nursing Interventions
- Assess fluid volume status
- Obtain daily weights
 - 1 liter = 1 kg (2.2 lb.)
- Measure & calculate I & O
- Monitor lab values
- Provide frequent mouth care
- Administer tube feedings &/or IV fluids
- Protect skin integrity
- Safety – implement measures to prevent falls
- Pulmonary toilet
- Offer fluids as appropriate
- Medications

Fluid Types
- Oral rehydration.
- Intravenous solutions
 - Isotonic electrolyte solutions to treat hypotensive patient – expands plasma volume.
 - Lactated Ringer's.
 - 0.9% Normal Saline.
 - Hypotonic solutions – provides free water & electrolytes – allows kidneys to select & retain needed amounts. Decreases intravascular osmolality.
 - 0.45% N.S.
 - D5%/0.2%N.S.

Parenteral Fluids
- Purposes of Fluid Therapy
 - Maintenance Needs
 - Fluids
 - Electrolytes
 - Replacement
 - Correction of electrolyte disturbances

Assessment
- I & O
- Daily body weights
- Vital signs
- Skin turgor
- Urinary specific gravity
- Laboratory values
- I.V. site
Crystalloids

- Dextrose Solutions
 - D5W
 - Isotonic \(\rightarrow \) Hypotonic
 - D5W is 5% dextrose in water is hypotonic so it moves fluid into the cells out of the circulation
 - Free water to aid renal excretion of solutes
 - Calories 50 grams Dextrose
 - Avoid excess

- Sodium Chloride solutions
 - Isotonic Saline (0.9% NaCl)
 - Expands extracellular fluid
 - Does not enter the ICF
 - Use
 - ECF deficits
 - Hyponatremia
 - Hypochloremia
 - Metabolic alkalosis

- 0.45% NaCl
 - Hypotonic
 - Provides Na, Cl, free water
 - Basic fluid for maintenance
 - Uses
 - Maintenance
 - Hypovolemia with hypernatremia

- Balanced electrolyte solutions
 - Lactated Ringers (Na, Cl, K, Ca, lactate)
 - Lactate \(\rightarrow \) Bicarbonate
 - Metabolic acidosis
 - Third spacing
 - Fluid resuscitation
 - Normosol
 - Isolyte
 - Plasma-Lyte

Colloids

- Protein or starch molecules in fluid
- Increase osmotic pressure – volume expansion
- Albumin
 - 5% – equivalent to plasma
 - 25% - hyperoncotic
 - Plasma expander
- Dextran
 - Low molecular weight (dextran 40)
 - High molecular weight (dextran 70)
- Hetastarch
- Supplemental fat emulsions (Lipids)

Adverse effects of IV therapy

- Fluid Volume Excess/Deficit
- Activity intolerance
- Impaired skin integrity
- Impaired tissue perfusion
- Risk for dysrhythmias
- Risk for injury
- Electrolyte imbalances (specify)
- Altered nutrition
- Ineffective breathing patterns
Study Guide

- List assessment findings for fluid volume deficit.
- List assessment findings for fluid volume excess.
- Identify fluid and electrolyte issues for infants and elderly.
- Know the compensating mechanisms most likely to occur in the presence of respiratory acidosis, respiratory alkalosis, metabolic acidosis, metabolic alkalosis.
- Be aware of causes and symptoms of potassium imbalances, sodium imbalances.
- List ways to assess for fluid retention.
- Identify the signs that indicate that fluid replacement is needed.