Water and Minerals: The Ocean Within

BIOL 103, Chapter 10

Today’s Topic

- Water: Crucial to Life
- Intake Recommendations: how much water is enough?
- Minerals Overview
- Major Minerals: Sodium, Potassium, Chloride, Calcium, Phosphorous, Magnesium, Sulfur
- Trace Minerals

Water: Crucial to Life

- Water is the most essential nutrient
 - 45-75% of body’s weight
 - 2/3 of body water is intracellular: inside the cell
 - 1/3 of body water is extracellular: water between cells and in (blood) plasma

Water: Crucial to Life

- Electrolytes and water
 - When minerals or salts dissolve in water, they form ions (electrolytes)
 - Cations
 - Anions
 - In your body cells: your body controls and balances the concentration of electrolytes, both within and outside of each cell.
 - Osmosis
 - Diluted side to concentrated side
Intake Recommendations

- Intake recommendations: How much water is enough?
 - Men = 3.7 liters/day
 - Women = 2.7 liters/day
 - Pregnancy and lactation = 3.0–3.8 liters/day
 - Increased needs for activity and sweating
- Sources:
 - Drinking water
 - Beverages
 - Water in food
 - Metabolic reactions (250-350 mL/day)

Water Excretion: Where Does the Water Go?

1. Insensible water losses: the continuous loss of body water by evaporation from the ______ and diffusion through ______.
 - ¼-½ of daily fluid loss
2. Urine (~1-2 liters per day)
3. Illness
4. External factors that contribute to water losses:
 - Low humidity
 - High altitude
 - High protein/salt foods

Water Balance

- How does your body regulate water balance?
 1. Thirst: reminds us to drink more water, but it is unreliable during hot weather or heavy ______
 2. Hormonal effects:
 - Antidiuretic hormone (ADH)/Vasopressin
 - Aldosterone

Fig 10.4 Functions of Water
Water Balance – How do kidneys know how to conserve water?

1. Special cells in brain sense rising sodium levels in the body → signals ______ gland to release ADH → signals kidneys to conserve water → water reabsorption dilutes sodium levels

2. Sensors in the kidneys detect a drop in blood pressure → ______ gland release aldosterone → kidneys retain sodium → water follows sodium → water reabsorption

Dehydration

- Dehydration
 - Any condition that causes rapid water loss is dangerous to the body
 - Can be caused by diarrhea, vomiting, heavy sweating
 - Signs: fatigue, dry mucous membranes, headache, dark urine with strong odor
 - Water loss of 20% of body weight can cause coma or death
 - Treatment: water consumption (with electrolytes) or IV (moderate to severe cases)

Water Intoxication

- Water intoxication:
 - Can occur in people who drink too much water
 - Overhydration can also occur in people with untreated glandular disorders that cause excessive water retention
 - Deionized water (without minerals/electrolytes)
 - Causes low blood sodium → headaches → seizures → coma → death
Understanding Minerals

• Minerals
 – Inorganic
 – Not destroyed by heat, light, acidity, alkalinity
 – Micronutrients (needed in small amounts)
 – Grouped as:
 1. **Major minerals**:
 2. **Trace minerals** (AKA *microminerals*)

Minerals in Foods

• Found in plant (soil) and animal (diet) foods
• Found in drinking water: sodium, magnesium, fluoride
• Mineral absorption limited by several factors:
 1. GI tract
 2. Competing minerals (e.g. megadose)
 3. High-fiber diet contain **phytates** (iron, zinc, manganese, calcium)
 4. **Oxalate** (calcium)

Major Minerals and Health

• Hypertension: persistent high blood pressure
 – Affects ¼ of American adults
 – Systolic BP is the higher number
 • pressure during contraction
 – Diastolic BP is the lower number
 • pressure resting phase
 – Normal BP: __________ mmHg
 • If persistent systolic above 140 or diastolic BP above 90
 usually requires treatment

Sodium

• Functions:
 1. Fluid balance, blood pressure, pH
 2. Nerve impulse transmission
• Food sources
 – Processed and convenience foods
 – Added (table) salt
Potassium

- **Functions:**
 1. Muscle contraction
 2. Nerve impulse transmission
 3. Regulates blood pressure and heartbeat
- **Food sources:**
 - People who eat low-sodium, high potassium diets often have lower blood pressure
 - Vegetables and fruits such as potatoes, spinach, melons, bananas
 - Meat, poultry, fish, dairy products

Chloride

- **Functions:**
 1. Fluid balance (blood, sweat, tears)
 2. Nerve impulse transmission
 3. Hydrochloric Acid (stomach acid)
- **Food sources:**
 - Table salt (NaCl – sodium chloride)
- **Deficiency:**
 - Excessive vomiting (ex. Bulimia nervosa)

Calcium

- **Functions:**
 1. 99% of calcium found in bones and teeth
 - Made up of **Hydroxyapatite**: a crystalline mineral compound of calcium and phosphorous.
 - Reservoir to supply calcium and phosphorous to blood and soft tissues
 2. 1% in other functions: muscle contraction, blood clotting, nerve impulse transmission, cell metabolism

- **Regulation of blood calcium levels by three hormones:**
 - To prevent dips in blood calcium levels, your body will demineralize bone
 - If low blood calcium levels → **calcitriol** increases intestinal absorption of calcium, and **parathyroid hormone (PTH)** activates osteoclasts to release bone calcium
 - If high blood calcium levels → thyroid glands release **calcitonin** to reduce blood calcium
Regulation of Blood Calcium

- **Calcitonin**
 - If calcium level rises above set point
- Thyroid gland releases calcitonin
- Blood calcium level falls
- Parathyroid glands release parathyroid hormone (PTH)
- Blood calcium level rises below set point

Function:
- Activate/deactivate enzymes during the final steps of energy metabolism (carbs, fats, and proteins)
- Component of ATP and phospholipids

Food sources:
- Protein-rich foods such as meat, milk, and eggs
- Processed meats, soft drinks

Phosphate balance:
- Deficiency is rare

Calcium

- **Food sources:**
 - Dairy products, green vegetables, Chinese cabbage, and tofu
 - Fortified products (breakfast cereal, soy milk, fruit juice)
 - **Oxalate:** binds calcium → less calcium absorbed
 - Calcium supplementation will not interfere with absorption of other minerals, but can interfere with the absorption of some medications

Phosphorous

- **Functions:**
 - Activate/deactivate enzymes during the final steps of energy metabolism (carbs, fats, and proteins)
 - Component of ATP and phospholipids

- **Food sources:**
 - Protein-rich foods such as meat, milk, and eggs
 - Processed meats, soft drinks

Phosphate balance:
- Deficiency is rare

Magnesium

- **Function:**
 - Participates in more than 300 types of enzyme-driven reactions, including energy metabolism, blood clotting, muscle contraction, DNA and protein synthesis

- **Food sources:**
 - Whole grains, vegetables, legumes, tofu, seafood, and chocolate

- **Magnesium balance:**
 - We absorb ~50% of dietary magnesium
 - At risk for deficiency: chronic diarrhea, poor diet, and heavy alcohol use.
Sulfur

- **Function:**
 - Primarily a component of organic nutrient, including other vitamins/amino acids
 - Help proteins maintain their functional shapes
 - Liver detoxification
- **Food sources:**
 - Typical diets contain ample sulfur
- **Deficiency:**
 - Unknown

Trace Minerals

- **Trace Minerals:**
 - Iron, Zinc, Selenium, Iodine, Copper, Manganese, Fluoride, Chromium, Molybdenum
- **Cofactors for enzymes**
- **Components of hormones**
- **Participate in many chemical reaction**
- **Essential for:**
 - Growth
 - Immune System

Iron

- **Functions:**
 1. Oxygen transport (as part of hemoglobin and myoglobin)
 - **Hemoglobin:** carries oxygen in blood
 - **Myoglobin:** moves oxygen into muscle cells
 2. Cofactor for enzymes
 - Participates in reactions involving energy production
 3. **Immune function**
 4. Brain and nervous system function
 - Nerve cell protection: iron helps produce myelin sheath
 - Nerve cell communication: iron helps produce neurotransmitters

Iron and Hemoglobin
Nerve Cells

Regulation of Iron in the body

• Iron absorption depends on:
 1. Iron status (primary factor)
 2. GI function
 • Depends on stomach acid (HCl)
 3. Amount and type of iron in food
 • 2 types of iron found in food:
 — Heme iron: found in the hemoglobin and myoglobin of animal foods
 — Non-heme iron: iron in plants and animal foods that is not part of hemoglobin or myoglobin.

Problem Set 10, Q3

• Explain the difference between heme and non-heme iron. Which is absorbed better?

 — Heme iron: found in the hemoglobin and myoglobin of ___________ foods
 — Non-heme iron: iron in plants and animal foods that is not part of hemoglobin or myoglobin.
 — ________________ is absorbed better

Iron

• Iron absorption is affected by the following dietary factors:
 — Enhance (for non-heme iron): Vitamin C
 — Inhibit:
 • Phytate and Oxalate bind to non-heme iron
 • Calcium, Zinc, and Iron compete for absorption
• Transport and storage:
 — Transporter: Transferrin
 — Storage form of iron: Ferritin (most)
• Turnover and losses:
 — Rapid growth and blood expansion (infant → young children)
 — Blood loss
 — Digestive disorder
Iron

• Food sources:
 – Red meat, oyster, legumes, tofu, whole grains
• Deficiency:
 – Iron-deficiency anemia
• Toxicity:
 – Adult doses can cause poisoning in children
 – Hereditary hemochromatosis – a genetic disorder in which excessive absorption of iron results in abnormal iron deposits in the liver and other tissues.

Zinc Functions

• Cofactor for nearly 100 enzymes:
 – Functions fall into 3 categories: catalytic, structural, regulatory.
 – Helps proteins fold into structural shapes
 – Gene activation, cell death, nerve transmission
 – Immune system

Regulation of Zinc in the Body

• Absorption:
 – ~10-35% of zinc in diet
 – Depends on body’s needs, zinc content of the meal, and presence of competing minerals
 – Phytate and supplemental calcium inhibit absorption
• Transport, distribution, and excretion:
 – Zinc circulates in the bloodstream bound to protein, traveling to the liver and tissues.
• Food sources:
 – Red meats, seafood

Zinc

• Deficiency:
 – Uncommon, but may occur in people with illness that impair absorption
 • Poor growth and delayed development
 – Zinc deficiency lowers immunity; infection causes zinc loss
• Toxicity:
 – Usually rare
 – Can cause copper deficiency:
 • Q: Why is zinc toxicity beneficial for those with Wilson’s disease (genetic disorder that increases copper absorption)?
Selenium

Functions:
1. Part of antioxidant enzyme
2. Thyroid metabolism: convert thyroid hormone to its most active form

Absorption:
- Enhance absorption: Vitamins A, C, E
- Inhibits absorption: Phytates

Iodine

Function: Thyroid hormone production
- Thyroid hormone helps regulate body temperature, basal metabolic rate, reproduction, and growth

Food sources:
- Iodized salt, saltwater fish, seafood, seaweed

Selenium

Food sources:
- Organ meats, fish, seafood, meats, plants grown in selenium-rich soil

Deficiency:
- Keshan disease: enlarged heart disorder in children
- Worsens hypothyroidism (low thyroid hormones → slowing of mental/physical functions)

Toxicity:
- Brittle hair and nails, garlic like odor

Iodine

Deficiency:
- Goiter: enlarged thyroid gland
 - Low iodine → low thyroid hormone → produces more TSH → thyroid gland grows bigger
- Cretinism (during pregnancy): mental retardation, stunted growth, deafness, muteness (in baby)

Toxicity:
- Goiter
 - Too much iodine → inhibit thyroid hormone synthesis → stimulate thyroid growth → goiter.
Iodine and Thyroid Gland

Problem Set 10 Question #4:

Q: Explain two ways someone can have hypothyroidism. (Hint: which two minerals are involved?)

Copper

- **Functions:**
 - In many reactions including energy release, skin pigmentation, etc.
 - Works with ceruloplasmin, a copper-dependent enzyme required for iron transport.
- **Absorption:**
 - Absorption varies from 20% to 50%
 - Interferes with absorption: iron, zinc

Copper

- **Deficiency:**
 - Causes anemia and poor immune function
 - Because copper deficiency reduces production of red and white blood cells
- **Toxicity:**
 - Relatively non-toxic
- **Food sources:**
 - Organ meats, shellfish, nuts, legumes, peanut butter, chocolate
Manganese

• Functions:
 – Urea formation
 – Antioxidant enzyme systems/MnSOD
• Food sources:
 – Tea, nuts, cereals
• Deficiency:
 – High calcium, magnesium, iron diets can interfere with manganese absorption
• Toxicity:
 – Incidents due to air pollutants
 • Symptoms: hallucinations, memory/motor coordination.

Fluoride

• Functions:
 – Bone and tooth structure by promoting deposits of calcium and phosphorous.
• Fluoride Sources (Problem Set 10 Question# 5):
 – Fluoridated water
 – Fluoride supplements, toothpastes, mouthwash
• Toxicity:
 – Excess can cause fluorosis: discoloration and “specks on teeth; weakens teeth.
• The fluoridation debate

Chromium

• Functions:
 – Glucose metabolism
 • Enhances insulin’s ability to move glucose into cells.
• Food sources:
 – Mushrooms, dark chocolate, nuts, whole grains
• Deficiency and toxicity:
 – Difficult to determine deficiency
 – No UL

Molybdenum

• Functions:
 – Enzyme cofactor (e.g. ADH)
• Food sources
 – Peas, beans, organ meats, some breakfast cereals
• Absorption:
 – Inhibit: Copper
• Deficiency/Toxicity:
 – Deficiency: Rare
 – Toxicity: Unlikely