Water and Minerals: The Ocean Within

BIOL 103, Chapter 8

Water: Crucial to Life

- Water is the most essential nutrient
 - 45–75% body weight
 - Body water
 - 2/3 Intracellular
 - 1/3 Extracellular

Water: Crucial to Life

- Electrolytes and water
 - When minerals or salts dissolve in water → form ions:
 - Cations
 - Anions
 - Osmosis
Intake Recommendations

- How much water is enough?
 - Men = 3.7 liters/day AI
 - Women = 2.7 liters/day AI
 - Pregnancy = 3.0 liters/day AI
 - Lactation = 3.8 liters/day
 - Increased needs for activity and sweating

Sources
- 75-80% from Beverages
- 20-25% from Foods
- Small amount from metabolic reactions (250-350mL/day)

Water Excretion: Where Does the Water Go?
1. **Insensible water losses**: the continuous loss of body water by evaporation from the lungs and diffusion through skin.
 - ¼-½ of daily fluid loss
2. Urine (~1-2 liters per day)
3. Illness
4. External factors that contribute to water losses
Intake Recommendations

- Water Balance
 - Bodies carefully maintain water balance
 1. Hormonal effects
 - Antidiuretic hormone (ADH)
 - Aldosterone
 2. Thirst
 3. Alcohol, caffeine, and common medications affect fluid balance

Water Balance – How do kidneys know how to conserve water?

1. Spinal cells in brain sense rising sodium levels in the body → signals pituitary gland to release ADH → signals kidneys to conserve water → water reabsorption dilutes sodium levels
2. Sensors in the kidneys detect a drop in blood pressure → adrenal glands release aldosterone → kidneys retain sodium → water follows sodium → water reabsorption

Intake Recommendations

- Dehydration
 - Early signs: Fatigue, headache, and dark urine with strong odor
 - Water loss of 20% can cause coma and death
 - Seniors and infants especially vulnerable
 - Treatment: water consumption (with electrolytes) or IV (moderate to severe cases)
Water Intoxication

- **Water intoxication:**
 - Can occur in people who drink too much water
 - Over-hydration can also occur in people with untreated glandular disorders that cause excessive water retention
 - Deionized water (without minerals/electrolytes)
 - Causes low blood sodium → headaches → seizures → coma → death

Understanding Minerals

- **Minerals**
 - Inorganic
 - Not destroyed by heat, light, acidity, alkalinity
 - Micronutrients (needed in small amounts)
 - Grouped as:
 1. **Major minerals** (>100 mg/day)
 2. **Trace minerals** (<100 mg/day)

Minerals in Foods

- Found in plant (soil) and animal (diet) foods
- Found in drinking water: sodium, magnesium, fluoride
- Mineral absorption limited by several factors:
 1. GI tract
 2. Competing minerals (ex. megadose)
 3. High-fiber diet contain phytates (iron, zinc, manganese, calcium)
 4. Oxalate (calcium)
Major Minerals and Health

- Mineral status significantly affects health
- Play critical parts in **hypertension** and **osteoporosis**

Sodium

- Functions:
 1. Fluid balance, blood pressure, and pH
 2. Nerve impulse transmission
- Food sources
 - Processed and convenience foods
 - Added (table) salt

Potassium

- Functions:
 1. Muscle contraction
 2. Nerve impulse transmission
 3. Regulates blood pressure and heartbeat
- Food sources:
 - People who eat low-sodium, high potassium diets often have lower blood pressure
 - Vegetables and fruits such as potatoes, spinach, melons, bananas
 - Meat, poultry, fish, dairy products
Potassium

- Dietary Recommendations
 - AI: 4,700 mg/day
- Deficiency
 - Likely factor in hypertension risk
 - Can disrupt acid-base balance
- Toxicity
 - Rare
 - High levels can slow heart

Chloride

- Functions:
 1. Fluid balance (blood, sweat, tears)
 2. Hydrochloric Acid (stomach acid)
- Food sources:
 - Table salt (NaCl – sodium chloride)
- Deficiency:
 - Excessive vomiting (ex. Bulimia nervosa)

Calcium

- Functions
 - Bone structure
 - Hydroxyapatite
 - Bone cells
 - Osteoblasts
 - Osteoclasts
 - Reserve of calcium and phosphorus
 - Muscles and metabolism
 - Flow of calcium causes muscles to contract or relax
 - Other functions
 - Blood clotting
 - Nerve impulse transmission
Calcium

- Regulation of blood calcium levels
 - Calcitriol/Vitamin D
 - Parathyroid hormone
 - Calcitonin

- Dietary Recommendations
 - RDA: 1,300 mg/day (children 9-18)
 - RDA: 1,000 mg/day (men 19-70; women 19-50)
 - RDA: 1,200 mg/day (men 70+; women 51+)

Regulation of Blood Calcium

- Food Sources
 - Dairy products, green vegetables, processed and fortified foods
 - Oxalate
 - Calcium supplementation

Calcium

- Regulation of blood calcium levels by three hormones:
 - To prevent dips in blood calcium levels, your body will demineralize bone
 - If low blood calcium levels → calcitriol increases intestinal absorption of calcium, and parathyroid hormone (PTH) activates osteoclasts to release bone calcium
 - If high blood calcium levels → thyroid glands release calcitonin to reduce blood calcium

Calcium

- Food Sources
 - Dairy products, green vegetables, processed and fortified foods
 - Oxalate
 - Calcium supplementation
Phosphorus

- Functions
 - Bone structure
 - Component of ATP, DNA, RNA, and phospholipids
- Food sources
 - Milk, eggs, beans, lentils
 - Processed foods
- Phosphate balance
 - Diets that are too high in phosphorus and too low in calcium → increased bone loss

Magnesium

- Function
 - Participates in more than 300 types of enzyme-driven reactions such as energy metabolism
 - Cardiac and nerve function
- Main Storage: Bones

Magnesium

- Food sources
 - Whole grains and vegetables, chocolates
- Deficiency:
 - At risk for deficiency: chronic diarrhea, heavy alcohol use, poor diet
 - Magnesium deficiency by itself is unusual
- Toxicity:
 - Rare, but UL: 350 mg/day

Sulfur

- Function:
 - Primarily a component of organic nutrient, including other vitamins/amino acids
 - Helps with liver’s detoxification process
 - Help proteins maintain their functional shapes
- Food sources:
 - Typical diets contain ample sulfur
- Deficiency:
 - Unknown
Trace Minerals

- Trace Minerals:
 - Iron, Zinc, Selenium, Iodine, Copper, Manganese, Fluoride, Chromium, Molybdenum
- Cofactors for enzymes
- Components of hormones
- Participate in many chemical reaction
- Essential for:
 - Growth
 - Immune System

Iron

- Functions
 - Oxygen transport as part of hemoglobin and myoglobin
 - Cofactor for enzymes involved in energy production, immune function, and normal brain/nervous system function

Iron and Hemoglobin
Iron

- Iron absorption
 - Dietary Factors Enhancing Iron Absorption
 • Vitamin C
 - Dietary Factors Inhibiting Iron Absorption
 • Phytate & oxalates bind to non-heme iron
 • Calcium, zinc, and iron compete for absorption

- Iron Transport and Storage
 - **Transferrin** ferries iron through blood
 - Most iron stored as **ferritin** in body

Iron

- Iron Absorption
 - Effect of Iron Status
 • Absorption varies
 - Effect of GI Function
 • Depends on stomach acid/HCl
 - Effect of the Amount and Form of Iron in Food
 • Plant sources: non-heme iron
 • Animal sources: heme-iron and non-heme iron.
Iron
• Iron Turnover and Losses
 – Routine destruction of old red blood cells releases iron → recycled to build new red blood cells
 – Lose iron in feces, sweat, skin cells, and menstruation
 – Dietary iron especially important in times of rapid growth and blood expansion (infant → young children)
 – Digestive disorders/blood loss increase iron losses

Iron
• Food sources:
 – Red meat, oyster, legumes, tofu, whole grains
• Deficiency:
 – Iron-deficiency anemia
• Toxicity:
 – Adult doses can cause poisoning in children
 – Hereditary hemochromatosis – a genetic disorder in which excessive absorption of iron results in abnormal iron deposits in the liver and other tissues.

Zinc
• Functions
 – Serves as cofactor for major enzymes
 • Cu-Zn SOD
 – Gene Regulation
 • Zinc fingers
 – Immune System
 – Sense of taste
 • Taste perception

Zinc
• Regulation of Zinc in the Body
 – Absorption
 • Similar to iron
 • Only about 10-35% of zinc absorbed
 • Phytate inhibits absorption
 – Transport, distribution, and excretion
 • Circulates bound to protein
 – Sources:
 • Red meat, seafood, refried beans, yogurt
Zinc

- **Deficiency**
 - Uncommon but may occur in people with illnesses that impair absorption
 - Poor growth and delayed development
 - Zinc deficiency lowers immunity; infection causes zinc loss
- **Toxicity**
 - Usually rare
 - Chronic doses may induce copper deficiency

Iodine

- **Function:** Thyroid hormone production
 - Thyroid hormone helps regulate body temperature, basal metabolic rate, reproduction, and growth
- **Food sources:**
 - Iodized salt, saltwater fish, seafood, seaweed

Iodine

- **Deficiency:**
 - **Goiter:** enlarged thyroid gland
 - **Cretinism:** mental retardation, stunted growth, deafness, muteness
 - Occurs in fetus if pregnant woman is deficient
- **Toxicity:**
 - **Goiter**

Cretinism

- Severely stunted physical and mental growth due to deficiency of thyroid hormones, usually due to maternal hypothyroidism
- Other signs: thickened skin, enlarged tongue, or protruding abdomen.
Iodine and Thyroid Gland

- **Functions:**
 1. Part of antioxidant enzyme (glutathione peroxidase)
 2. Thyroid metabolism: convert thyroid hormone to its most active form
- **Absorption:**
 - Enhance absorption: Vitamins A, C, E
 - Inhibits absorption: Phytates

Selenium

- **Functions:**
 - Part of antioxidant enzyme (glutathione peroxidase)
 - Thyroid metabolism: convert thyroid hormone to its most active form
- **Absorption:**
 - Enhance absorption: Vitamins A, C, E
 - Inhibits absorption: Phytates

- **Deficiency:**
 - Keshan disease
 - Increase cancer risk
- **Toxicity:**
 - Brittle hair and nails, garlic-like body odor

Selenium

- **Food sources:**
 - Organ meats, fish, seafood, meats, Brazil nuts
- **Deficiency:**
 - Keshan disease
 - Increase cancer risk
- **Toxicity:**
 - Brittle hair and nails, garlic-like body odor
Copper

- Functions
 - Melanin, collagen, and elastin production
 - Nerve function
 - Energy production
 - Iron Metabolism: ceruloplasmin

- Absorption and Storage
 - Little stored, most incorporated into ceruloplasmin
 - Interferes with absorption: Iron, Zinc

Manganese

- Functions
 - Energy production
 - Urea formation
 - Antioxidant enzyme systems/MnSOD

- Food Sources
 - Tea, nuts, cereals

- Inhibits absorption:
 - Magnesium, Calcium, Iron

Copper

- Food Sources
 - Organ meats, shellfish, nuts, and legumes

- Deficiency
 - Rare
 - Anemia, poor immune function

- Toxicity
 - Relatively nontoxic

Manganese

- Deficiency
 - Rare
 - Animal studies: impairs growth/bone abnormalities

- Toxicity
 - Incidents due to ______________ .
 • Symptoms: hallucinations, memory/motor coordination.
Fluoride

- Functions
 - Bone and tooth structure
- Food sources
 - Fluoridated water
- Balance
 - Excess can cause fluorosis
- The fluoridation debate

Chromium

- Functions:
 - __________ metabolism
 - Enhances insulin’s ability to move glucose into cells.
- Food sources:
 - Mushrooms, dark chocolate, nuts, whole grains
- Deficiency and toxicity:
 - Difficult to determine deficiency
 - No UL

Molybdenum

- Functions:
 - Enzyme cofactor that induce oxidation (e.g. sulfite oxidase)
- Food sources
 - Peas, beans, organ meats, some breakfast cereals
- Absorption:
 - Inhibit: Copper
- Deficiency/Toxicity:
 - Deficiency: Rare
 - Toxicity: Unlikely

Other Trace Minerals and Ultratrace Minerals

- Arsenic
- Boron
- Nickel
- Silicon
- Vanadium