Carbohydrates: Simple Sugars and Complex Chains
BIOL 103, Chapter 5

Today’s Topics
• Simple Sugars: Mono and Disaccharides
• Complex Carbohydrates
• Carbohydrate Digestion and Absorption
• Carbohydrates in the Body
• High Blood Glucose: Diabetes Mellitus
• Carbohydrates in your diet
• Carbohydrates and Health

Carbohydrates Capture Energy from the Sun
• Carbohydrates include sugars, starches, and fibers
• Major food sources: ______________
 – Produced during photosynthesis
• Two main carbohydrate types:
 – Simple (sugars)
 – Complex (starches and fiber)

Simple Sugars

<table>
<thead>
<tr>
<th>Monosaccharides</th>
<th>Disaccharides</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Glucose/GLU</td>
<td>1. Sucrose/SUC</td>
</tr>
<tr>
<td>2. Fructose/FRU</td>
<td>2. Lactose/LAC</td>
</tr>
</tbody>
</table>
Monosaccharides

• **Glucose/Dextrose**
 – Most __________________
 – Gives food mildly sweet flavor
 – Usually joined to another sugar
 – Provides energy to body cells (Blood sugar)
 • Only fuel source used by brain (unless not enough glucose left in your body)
 – Found in fruits, vegetables, honey

• **Fructose/Levulose**
 – __________________________
 – Tastes the sweetest
 – Present naturally in fruits and vegetables
 – Found in fruits, honey, high fructose corn syrup

• **Galactose**
 – Usually bond to glucose to form ________
 • Primary sugar in milk and dairy products

High Fructose Corn Syrup

• **How is it made?**
 1. Convert glucose → fructose, using isomerase
 2. Add corn syrup, then a specific ratio of glucose
 – Example: HFCS 55

• **Why do we use it?**
 – Before 1970s → U.S. cane sugar → too expensive
 – 1980s, food companies switched to cheaper corn
 • Pepsi/Coke switched in 1984
Why is High Fructose Corn Syrup associated with weight gain?

1. Corn is cheap → cheaper Soda → _________ → drink more → more calories
2. Fructose does NOT release insulin and leptin → does not feel _________ → drink more → more calories

• However, note that overconsumption of ANY forms of sugar will contribute to weight gain.

Disaccharides

• If you link two monosaccharides, they become disaccharides:
 - Sucrose: GLU + _____________
 - Lactose: GLU + _____________
 - Maltose: GLU + _____________

Disaccharides

• Sucrose: glucose + fructose
 - _____________
 - Made from sugar cane and sugar beets
 - Listed as “sugar” on food labels
• Lactose: glucose + galactose
 - _____________
 - Found in milk and milk products

Lactose Intolerance

• Who has it?
 - Anyone who does not have enough ________.
• Why do you get it?
 - Genetics: does not have lactase persistence (can produce lactose into adulthood)
 - Acquired by low lactose diet or injury to intestine usually during infancy
Disaccharides

• **Maltose**: glucose + glucose
 – ____________ sugar
 – Seldom occurs naturally in foods, but usually forms whenever long molecules of starch is broken down
 – Found in germinating cereal grains
 – Fermented in beer

Complex Carbohydrates

• Chains of _____________ sugar molecules
 – Oligosaccharides
 – _____________ sugar molecules
 – In breastfed infants, it plays a similar role to dietary fiber in adults (helps stools to pass by more easily)
 – Examples: dried beans, peas, lentils
 – Polysaccharides
 – Long chains of monosaccharides
 – Digestible (e.g. starch) or non-digestible (e.g. fiber)

Complex Carbohydrates

• **Starch**
 – How plants store energy
 – Long chains of glucose molecules:
 • **Amylose**: _____________ chains
 • **Amylopectin**: _____________ chains
 – Amylopectin is digested more _____________ than amylose.
 – **Resistant starch**: a starch that is not digested.
 – Food sources: grains, legumes, tubers (potatoes and yams)

Complex Carbohydrates

• **Glycogen**
 – Highly branched
 – _____________ form of carbohydrate in our body
 – Mostly stored in our skeletal _____________ and _____________
 – If blood glucose is low: glycogen → glucose
Complex Carbohydrates

- **Fiber:** carbohydrates and lignins
 - **Dietary fiber:** found in plants
 - fruits, vegetables, legumes, whole grains
 - **Functional fiber:** isolated and added to foods
 - **Total fiber:** dietary fiber + functional fiber

Complex Carbohydrates

- **Types of Fibers (Insoluble Fiber):**
 1. **Cellulose:** long, straight chains of glucose units
 - Structural function in plants: forms the woody fibers in trees + strong plant cell walls
 2. **Hemicellulose:** variety of monosaccharides with many branching side chains
 - Usually mixed in with cellulose in plants
 3. **Lignins**
 - Nondigestible substances in vegetables and fruits
 - Examples: strawberry seeds, woody parts of carrots and broccoli

Complex Carbohydrates

- **Types of Fibers (Soluble Fiber):**
 4. **Gums and viscoses**
 - Gel-forming fibers that hold plant cells together
 - Examples: Xanthan gum, guar gum and carrageenan
 5. **Pectins:** gel-forming polysaccharides
 - Especially in fruits
 - Pectins + acid + sugar = Jam
Complex Carbohydrates

• Types of fibers (cont.)
 6. Beta-glucans: polysaccharides of branched glucose units
 • Help decrease blood cholesterol levels
 • Food sources: barley, oats
 7. Chitin and chitosan
 • Primarily consumed in supplement form
 • Marked as weight-loss supplements
 • May impair absorption of fat-soluble vitamins and some minerals
 • Found in exoskeletons of crabs and lobsters

Carbohydrate Digestion: Carbohydrates to Single Sugars

• Mouth:
 — Salivary amylase
• Stomach:
 — HCl’s acidity stops the action of salivary amylase → stops carbohydrate digestion
• Small intestine
 — Pancreatic amylase: continues starch digestion
 — Bruch border enzymes: digest disaccharides
 — Other digestive enzymes:
 • Maltase, sucrase, and lactase

Carbohydrate Digestion

• Glycosidic bonds: bonds that link glucose molecules
 — Alpha bonds
 • Broken down by human enzymes (e.g. starch, glycogen)
 — Beta bonds
 • Are not broken down by human enzymes (e.g. cellulose, lactose for some people)

Carbohydrate Digestion and Absorption

• Enzymes
 — Highly specific in working with certain reactions and specific molecules
 • Commercial product: Beano
 — Some carbohydrates remain intact, such as fiber and resistant starch
 • Bacteria in colon digests them to gas + few short chain fatty acids → energy supply for colon cells
Carbohydrate Digestion and Absorption

- Absorption: in the small intestine
 - End products of carbohydrate digestion:
 - (Travel to Liver through the Portal Vein):
 - Glucose
 - Galactose \rightarrow __________________
 - Fructose \rightarrow __________________
 - __________________ stores and releases glucose to maintain blood glucose levels.

Carbohydrates in the Body

- Glucose is your primary fuel
- Storing Glucose as Glycogen
 - __________________ glycogen (~1/3)
 - Maintain normal blood glucose
 - __________________ glycogen (~2/3)
 - Fuel muscle activity

Carbohydrates in the Body

- Glucose is your primary fuel (cont.)
- Using Glucose for Energy
 - To obtain energy....
 - Cells must take up glucose from blood \rightarrow glucose goes into cell \rightarrow breaks down into CO2, water, and energy; OR
 - Breakdown ______________ or __________ using energy
Carbohydrates in the Body

• Glucose is your primary fuel (cont.)
 – Sparing Body Protein
 • Order of Energy usage by body:
 – ________ → ______ → _______
 • Adequate carbohydrates prevent body from breaking down proteins to make glucose.

• PrevenHng Ketosis
 – Low glucose + high acetyl CoA → ________ → ketosis → dehydration
 • Body needs a minimum of 50-100g of carbs/day to prevent ketosis

Regulating Blood Glucose Levels

• Why?
 – To maintain an adequate supply of energy for cells

• Controlled by hormones:
 – Insulin
 • High blood glucose → pancreatic beta cells release insulin into blood:
 1. Insulin signals cells to take in glucose
 2. Insulin signals liver and muscle cells to store glucose to glycogen

• Controlled by Hormones (cont.)
 – Glucagon
 • Low blood glucose → pancreatic cells release glucagon to blood → glucagon stimulates liver cells to break down glycogen to glucose and to make glucose from amino acids
 – Epinephrine/Adrenaline: “fight or flight”/sympathetic NS
Regulating Blood Glucose Levels

Glycemic Index measures effect of food on blood _______ levels
 Different foods vary in their effect on blood glucose levels
 Foods with High Glycemic Index cause faster and higher rise in blood glucose

Glycemic Index

High Blood Glucose: Diabetes Mellitus

What is diabetes? Disorder of carbohydrate metabolism
 Normally:
 • Eat food with glucose \(\rightarrow\) blood and cells
 • If too much blood glucose \(\rightarrow\) pancreas releases insulin \(\rightarrow\) blood glucose decreases
 If you have diabetes:
 • Pancreas: little or no insulin OR cells do not respond appropriately to insulin \(\rightarrow\) hyperglycemia
High Blood Glucose: Diabetes

• Consequences of Diabetes
 – Hyperglycemia:
 – “Starvation in the midst of plenty”
 – “Sweet urine”
 – Body breaks down fat and protein for energy sources → ketosis and acidosis
 – Over time, damage to body proteins and tissues

High Blood Glucose: Diabetes Mellitus

• Risk Factors:
 – Genetics
 • Type I (Caucasians)
 • Type II (Native Americans, Hispanic Americans, and African Americans)
 – Increased risk with “Westernized diet”, body fat around midsection
• Best Prevention:
 – Healthful diet (Well balanced meals, Exchange List)
 – Regular exercise

High Blood Glucose: Diabetes

• Forms of diabetes mellitus
 – Type 1: _________ of insulin production
 • “juvenile diabetes”
 – Type 2: cells are ____________________ to insulin
 • “adult-onset diabetes”
 • Pre-diabetes
 – Gestational diabetes: occurs during pregnancy

Low Blood Glucose: Hypoglycemia

• Low blood glucose: hypoglycemia
 – Symptoms:
 • Nervousness, irritability, hunger, headache, shakiness, rapid heart rate, weakness
 • Really low blood glucose → coma, death
 – Results from:
 • Too much insulin, missed meals, and vigorous exercise
Low Blood Glucose: Hypoglycemia

• Types of hypoglycemia:
 – **Reactive hypoglycemia**: body produces too much insulin in response to food
 • What to do?

 – **Fasting hypoglycemia**: body produces too much insulin (even without food)
 • Why?

Carbohydrates in Your Diet

• Choosing Carbohydrates wisely
 – Increase fruit, vegetables, whole grains, low-fat milk

• Strategies
 – Eat peel of fruits/veggies
 – Eat legumes
 – Choose brown rice, high fiber cereal
 – Gradually increase fiber intake and drink plenty of water to allow your body to adjust
 – Question: Why is it important to eat fiber to manage blood sugar?

Carbohydrates in Your Diet

• Moderating Sugar intake
 – Use less added sugar
 – Limit soft drinks, sugary cereals, candy, ice cream, and sweet desserts
 – Choose fresh fruits or canned in water or juice

Carbohydrates in Your Diet

• **Nutritive Sweeteners**: substances that sweeten food and can be absorbed and yield energy in the body.

 • Examples: honey, white sugar, brown sugar, maple syrup, fructose, glucose, xylitol, etc.
Carbohydrates in Your Diet

• Nutritive Sweeteners by types:
 1. **Natural**: mono + di-saccharides
 2. **Refined**: mono + di-saccharides extracted from plant food
 3. **Sugar Alcohol/Polyols**: may be sugar/sucrose free, but not always calorie free

Carbohydrates in Your Diet

• **Non-nutritive sweeteners**
 – “Artificial sweeteners”
 – Mostly sweeter than nutritive sweeteners, not much energy
 1. **Saccharin** (1970s bladder cancer)

Carbohydrates in Your Diet

• Non-nutritive sweeteners (cont.):
 2. **Aspartame** (combination of two amino acids: phenylalanine + aspartic acid)
 • Very sweet, but ~0 calories in diet
 • __________x sweeter than table sugar
 • ___________ destroys products → thus cannot be used in cooking
 • *NutraSweet, Equal, Sugar Twin, Spoonful, and Equal-Measure*
 • **PKU**: phenylketonuria

Carbohydrates in Your Diet

• Non-nutritive Sweeteners (cont.)
 3. **Acesulfame K**
 • __________x sweeter than table sugar
 • Provides NO Energy because body can’t digest it
 • Used in cooking, nondairy creamers, gelatins, chewing gum, powdered beverage mixes

 4. **Sucralose**
 • “Splenda”
 • Made from sucrose, ___________x sweeter
 • Used in baked goods, beverages, gelatin, etc.
Sugar-Free Candies

- **Maltitol** = sugar alcohol
 - From plants
 - Benefits:
 - No tooth decay
 - Safe for diabetics
 - Nearly as sweet as sugar → "I can eat more"

Carbohydrates and Health

- **Pros**: high fiber foods keep GI tract healthy, may reduce risk for heart disease and cancer
- **Cons**: excess sugar → weight gain, poor nutrient intake, tooth decay
- Sugar and dental caries (cavities) promoted by:
 - Sugar eaten by bacteria in teeth → acids → tooth decay → cavities
 - Chocolate or Candy?
 - "Natural toothbrushes"

Carbohydrates and Health

- **Fiber and Obesity**
 - Fiber rich food:
 - Low in fat and energy
 - Attract water → more filling
- **Fiber and Type 2 Diabetes (pg 162)**
 - Better control of blood glucose
- **Fiber and cardiovascular disease (pg 162-163)**
 - Can lower blood cholesterol levels
- **Fiber and GI disorder (pg 163)**
 - Healthier GI functioning

Carbohydrates and Health

- **Negative effects of excess fiber (pg 163)**
 1. Gradual intake and increased water consumption to prevent your stool from becoming hard and impacted
 2. Can bind small amounts of minerals → prevent some mineral absorption
 - Examples: Zn, Ca, Fe
 - Fiber has no UL