Cardiovascular System 3 – Blood Vessels, Flow and Pressure

A. Blood Vessels

arteries - *conducing vessels*; high pressure, thick walls, elastic arteries ("pressure reservoir") and muscular arteries

arterioles - *resistance vessels*; small diameter, smooth muscle in walls, vasoconstriction/vasodilation regulates blood flow to capillaries

capillaries - *exchange vessels*; microscopic, very thin walls (endothelium)

fluid filters out/in, permeability: continuous < fenestrated < sinusoid

venules – collecting vessels; small, thin walls

veins - low pressure conducting vessels; thin walls, high compliance ("volume reservoir")

valves ensure one-way flow back to heart

Overall circuit is arranged in *series*

→ pressure drops continuously from arteries to capillaries to veins

Blood supplies to different organs are arranged in *parallel*

→ high pressure, oxygenated blood delivered to all organs

→ independent regulation of blood flow to different organs

B. Blood Flow and Blood Pressure

Flow = \(\Delta P/R \)

1. **Cardiac output (CO)** = Total blood flow

2. **Blood pressure** difference (\(\Delta P \)) between arteries and veins is the driving force for blood flow.

 Mean arterial pressure (MAP) = Total \(\Delta P \) of the systemic circulation

 \[\text{MAP} = \text{diastolic } P + 1/3 (\text{systolic } P - \text{diastolic } P) \approx 90 \text{ mm Hg} \]

3. **Resistance (R)** - factors that oppose or reduce blood flow
 a. blood viscosity (↑RBCs → ↑viscosity)
 b. length (L) of blood vessel
 c. **radius (r)** of blood vessel: \(R \alpha 1/r^4 \)
 - vessel radius (diameter) is the major factor that determines resistance
 - small change in vessel radius results in large change in resistance and flow

 if diameter ↑2X → resistance ↓16X, flow ↑16X

Total Peripheral Resistance (TPR) is the resistance of entire systemic circuit

\[\text{MAP} = \text{CO} \times \text{TPR} \]

C. Regulation of Blood Pressure

Arterial BP (MAP) = CO \times TPR

- normal MAP \(\approx 90 \text{ mm Hg} \)

1. Factors that affect arterial blood pressure
 a. heart rate \(\uparrow \text{HR} \rightarrow \uparrow \text{CO} \rightarrow \uparrow \text{BP} \)
 b. stroke volume \(\uparrow \text{SV} \rightarrow \uparrow \text{CO} \rightarrow \uparrow \text{BP} \)
 c. blood volume \(\uparrow \text{BV} \rightarrow \uparrow \text{SV} \rightarrow \uparrow \text{CO} \rightarrow \uparrow \text{BP} \)
 d. vascular resistance \(\uparrow \text{TPR} \rightarrow \uparrow \text{BP} \)

2. Homeostatic Control of Blood Pressure

 cardiovascular control center located in the medulla oblongata,

 - integrates inputs from sensory receptors and higher brain centers

 - activates autonomic NS to regulate BP

 arterial baroreceptors - stretch receptors located in aorta and carotid arteries

 \(\downarrow \text{BP} \rightarrow \downarrow \text{stretch of artery walls} \rightarrow \downarrow \text{frequency of APs} \rightarrow \uparrow \text{sympathetic NS activation} \)

 sympathetic NS effects:
 \[\begin{align*}
 &\uparrow \text{HR (\(\beta_1 \))} \rightarrow \uparrow \text{CO} \\
 &\uparrow \text{contractility (\(\beta_1 \))} \rightarrow \uparrow \text{CO} \\
 &\uparrow \text{vasoconstriction (\(\alpha_1 \))} \rightarrow \uparrow \text{TPR}
 \end{align*} \]

3. Negative feedback control examples:
 a. hemorrhage
 b. exercise
D. Control of Blood Flow to Tissues

1. Intrinsic control (autoregulation)
 a. metabolic control
 - response of vascular smooth muscle to local chemical changes due to metabolism
 hyperemia - increase in blood flow to tissue in response to ↑ metabolic demand
 ischemia - insufficient blood flow to tissue
 b. Extrinsic control
 a. Autonomic NS
 sympathetic NS: NE → α₁ adrenergic receptors → vasoconstriction in most tissues
 b. Hormones
 Epi → β₂ adrenergic receptors → vasodilation in skeletal muscle
 ADH (vasopressin) → vasoconstriction in most tissues
 Paracrine regulators
 nitric oxide (NO) → vasodilation
 prostaglandins → vasodilation or vasoconstriction

E. Capillary Circulation (Microcirculation)

1. Flow Through Capillary Beds
 blood flow (perfusion) through capillaries is highly variable
 regulated by:
 - arteriolar smooth muscle (vasoconstriction/vasodilation)
 - precapillary sphincters

2. Exchange Across Capillary Walls
 fluid and substances exchanged across endothelium via diffusion, transcytosis, and bulk flow
 a. Bulk flow across capillary walls
 filtration out of a capillary – driven mostly by blood pressure in the capillary (BP_{cap})
 reabsorption back into capillary – driven mostly by colloid osmotic pressure (COP)
 (oncotic pressure) which due to plasma proteins (albumin) that stay in capillaries
 COP ≈ 25 mmHg
 b. Filtration and reabsorption
 determined by the balance between BP and COP in the capillary.
 Net filtration pressure NFP ≈ BP_{cap} – COP
 at arteriole end: BP_{cap} > COP → NFP is positive → filtration
 at venule end: BP_{cap} < COP → NFP is negative → reabsorption
 - total filtration exceeds reabsorption by ~2-3 L/day
 - excess interstitial fluid is collected by the lymphatic system and returned to veins
 edema results when filtration >> reabsorption
 (1) histamine - increases capillary permeability, plasma proteins leak out
 (2) high arterial BP - can increase BP_{cap} slightly, regulated by local vasoconstriction
 (3) high venous BP (back pressure) - increases BP_{cap}, hard to regulate
 (e.g., venous obstruction, congestive heart failure)