Chapter 20

The Cardiovascular System

Blood

Lecture Presentation by
Steven Bassett
Southeast Community College
Introduction

• The cardiovascular system functions as a system to transport numerous substances throughout the body such as:
 • Nutrients
 • Oxygen and carbon dioxide
 • Enzymes and hormones
 • Ions
 • Transports metabolic wastes to the kidneys
 • Transports leukocytes to aid in fighting infectious agents
Introduction

- Other functions of the cardiovascular system are:
 - Stabilization of body temperature
 - Prevention of the loss of body fluids via the clotting process
 - Stabilization of pH and electrolyte balance
Functions and Composition of the Blood

- Blood consists of two components
 - **Plasma**
 - Liquid matrix of blood
 - **Formed elements**
 - Blood cells and cell fragments that are suspended in the plasma, and include:
 - **Erythrocytes (red blood cells)**: transport oxygen and carbon dioxide
 - **Leukocytes (white blood cells)**: function in the immune system
 - **Platelets**: involved in blood clotting
Sample of whole blood consists of:

Plasma (46–63%)

Plasma Composition

- **Plasma proteins**
 - 7%
- **Other solutes**
 - 1%
- **Water**
 - 92%

Components of plasma

Other Solutes

<table>
<thead>
<tr>
<th>Electrolytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal extracellular fluid ion composition essential for vital cellular activities; ions contribute to osmotic pressure of body fluids; major plasma electrolytes are Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, HCO₃⁻, HPO₄²⁻, SO₄²⁻</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organic nutrients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used for ATP production, growth, and maintenance of cells; include lipids (fatty acids, cholesterol, glycerides), carbohydrates (primarily glucose), and amino acids</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organic wastes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carried to sites of breakdown or excretion; include urea, uric acid, creatinine, bilirubin, ammonium ions</td>
</tr>
</tbody>
</table>

Plasma Proteins

- **Albumins (60%)**
 - Major contributors to osmotic pressure of plasma; transport lipids, steroid hormones

- **Globulins (35%)**
 - Transport ions, hormones, lipids; immune function

- **Fibrinogen (4%)**
 - Essential component of clotting system; can be converted to insoluble fibrin

- **Regulatory proteins (< 1%)**
 - Enzymes, proenzymes, hormones
Functions and Composition of the Blood

• Whole blood consists of:
 • Plasma, erythrocytes, leukocytes, platelets

• Whole blood can be fractionated to form:
 • Plasma
 • Packed cells
 • Platelets

• Packed cells consists of:
 • Mostly erythrocytes
Functions and Composition of the Blood

• Whole Blood
 • Males: 4–6 liters
 • Females: 4–5 liters
 • **Hypovolemic**: low blood volumes
 • **Normovolemic**: normal blood volumes
 • **Hypervolemic**: excessive blood volumes
 • pH: 7.35–7.45
Functions and Composition of the Blood

• Plasma
 • Makes up about 55 percent of the volume of whole blood
 • Consists of:
 • 92 percent water
 • 7 percent proteins
 • Albumin, globulins, fibrinogen, regulatory proteins
 • 1 percent other solutes
 • Electrolytes, organic nutrients, organic waste
Sample of whole blood consists of Plasma (46–63%).

PLASMA COMPOSITION
- Plasma proteins: 7%
- Other solutes: 1%
- Water: 92%

Components of plasma
- Transports organic and inorganic molecules, formed elements, and heat

Plasma Proteins
- Albumins (60%): Major contributors to osmotic pressure of plasma; transport lipids, steroid hormones
- Globulins (35%): Transport ions, hormones, lipids; immune function
- Fibrinogen (4%): Essential component of clotting system; can be converted to insoluble fibrin
- Regulatory proteins (< 1%): Enzymes, proenzymes, hormones

Other Solute
- Electrolytes: Normal extracellular fluid ion composition essential for vital cellular activities; ions contribute to osmotic pressure of body fluids; major plasma electrolytes are Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, HCO₃⁻, HPO₄⁻, SO₄²⁻
- Organic nutrients: Used for ATP production, growth, and maintenance of cells; include lipids (fatty acids, cholesterol, glycerides), carbohydrates (primarily glucose), and amino acids
- Organic wastes: Carried to sites of breakdown or excretion; include urea, uric acid, creatinine, bilirubin, ammonium ions
Functions and Composition of the Blood

- Differences between Plasma and Interstitial Fluid
 - **Dissolved oxygen in plasma**
 - Concentration is higher than in interstitial fluid
 - Therefore, oxygen diffuses into the tissues
 - **Carbon dioxide concentration in plasma**
 - Concentration is lower than in interstitial fluid
 - Therefore, carbon dioxide diffuses out of the tissues
 - Plasma consists of **dissolved protein**
 - Interstitial fluid does not have dissolved protein
Functions and Composition of the Blood

• The Plasma Proteins
 • Produced mainly by the liver
 • Makes up about 7 percent of the plasma
 • Consists of three major classes of protein
 • Albumins (60 percent)
 • Globulins (35 percent)
 • Fibrinogens (4 percent)
Functions and Composition of the Blood

• The Plasma Proteins
 • Albumins (smallest of the plasma proteins)
 • Contribute to the osmotic pressure of plasma
 • Transport fatty acids and steroid hormones
 • Globulins
 • Two major types
 • Immunoglobulins: attack pathogens
 • Transport globulins: transport ions and hormones
 • Fibrinogens (largest of the plasma proteins)
 • Involved in blood clotting processes
Sample of whole blood consists of:

Plasma (46–63%)

- **Plasma composition**
 - Plasma proteins: 7% (Major contributors to osmotic pressure of plasma; transport lipids, steroid hormones)
 - Other solutes: 1% (Transport ions, hormones, lipids; immune function)
 - Water: 92% (Essential component of clotting system; can be converted to insoluble fibrin)
 - Components of plasma:
 - Albumins (60%): Transport ions, hormones, lipids; immune function
 - Globulins (35%): Essential component of clotting system; can be converted to insoluble fibrin
 - Fibrinogen (4%): Enzymes, proenzymes, hormones
 - Regulatory proteins (< 1%): Normal extracellular fluid ion composition essential for vital cellular activities; ions contribute to osmotic pressure of body fluids; major plasma electrolytes are Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, HCO₃⁻, HPO₄⁻, SO₄²⁻
 - Electrolytes: Organic nutrients (Used for ATP production, growth, and maintenance of cells; include lipids (fatty acids, cholesterol, glycerides), carbohydrates (primarily glucose), and amino acids)
 - Organic nutrients: Carried to sites of breakdown or excretion; include urea, uric acid, creatinine, bilirubin, ammonium ions

- **Other solutes**
 - Water transports organic and inorganic molecules, formed elements, and heat
Formed Elements

- Formed Elements
 - Makes up about 45 percent of whole blood
 - Platelets (<0.1 percent of whole blood)
 - Leukocytes (<0.1 percent of whole blood)
 - Neutrophils (50–70 percent of the WBCs)
 - Eosinophils (2–4 percent of the WBCs)
 - Basophils (<1 percent of the WBCs)
 - Lymphocytes (20–30 percent of the WBCs)
 - Monocytes (2–8 percent of the WBCs)
 - Erythrocytes (99.9 percent of whole blood)
Sample of whole blood consists of formed elements (37–54%).

FORMED ELEMENTS
- Platelets: < 0.1%
- White blood cells: < 0.1%
- Red blood cells: 99.9%

White Blood Cells
- Neutrophils (50–70%)
- Eosinophils (2–4%)
- Monocytes (2–8%)
- Basophils (< 1%)
- Lymphocytes (20–30%)

Red Blood Cells
Formed Elements

- Red Blood Cells (RBCs) or Erythrocytes
 - **Hematocrit** readings
 - Also called *packed cell volume* (PCV)
 - Also called *volume of packed red cells* (VPRC)
 - Defined as the percentage of whole blood occupied by the formed elements
 - Males: 45 percent (5.4 million RBCs per microliter)
 - Females: 42 percent (4.8 million RBCs per microliter)
Formed Elements

- Red Blood Cells (RBCs) or Erythrocytes
 - One microliter (or cubic millimeter) of blood consists of millions of RBCs
 - Male: 5.4 million per cubic millimeter
 - Female: 4.8 million per cubic millimeter
Formed Elements

• Structure of RBCs
 • Biconcave disc
 • Thin central region
 • Measure about 7.7 microns in diameter
 • Lack cell organelles
 • Lack a nucleus (anucleated)
 • Contain hemoglobin
A scanning electron micrograph of red blood cells reveals their three-dimensional structure quite clearly.

A sectional view of a red blood cell.
Formed Elements

• RBC Life Span and Circulation
 • Circulating RBCs lack:
 • A nucleus
 • All organelles
 • Due to the lack of a nucleus and organelles, the life span is only about:
 • 120 days
Formed Elements

- RBC Life Span and Circulation
 - Significance of a lack of a nucleus:
 - Allows the cell to be flexible as it travels through the circulatory system
 - Allows for more room for hemoglobin
 - Significance of a lack of mitochondria:
 - Mitochondria use oxygen to manufacture ATP
 - Without mitochondria, oxygen can be transported to the tissues instead of being “used” by the mitochondria
Formed Elements

- RBCs and Hemoglobin
 - A developing erythrocyte loses its nucleus and organelles
 - A mature erythrocyte is mainly a cell membrane surrounding water and protein
 - The water accounts for 66 percent of the RBC’s volume
 - The protein accounts for 33 percent of the RBC’s volume of which >95 percent is hemoglobin
 - Hemoglobin is responsible for transporting oxygen and carbon dioxide (the main function of RBCs)
 - 280 million molecules of hemoglobin per RBC
Formed Elements

- RBCs and Hemoglobin
 - Consists of four polypeptide subunits
 - Two alpha chains
 - Two beta chains
 - Each subunit contains a molecule of heme
 - Heme is a porphyrin ring
 - Each heme consists of an iron ion
 - Iron binds to oxygen
 - The polypeptide units bind to carbon dioxide
 - Oxygen and carbon dioxide do not compete with each other for binding sites
Figure 20.3 The Structure of Hemoglobin
Formed Elements

• Blood Types
 • Blood types are determined by the antigens on the surface of the erythrocytes
 • Also known as agglutinogens
 • These agglutinogens are either glycoproteins or glycolipids
 • In the plasma of blood are proteins called antibodies
 • Also known as agglutinins
Formed Elements

• Blood Types
 • There are three major types of agglutinogens
 • Agglutinogen A
 • Agglutinogen B
 • Agglutinogen D
 • There are two major types of agglutinins
 • Agglutinin a
 • Agglutinin b
Formed Elements

• Blood Types (continued)
 • People with type A blood have:
 • A agglutinogen on the RBC
 • b agglutinin in the plasma
 • People with type B blood have:
 • B agglutinogen on the RBC
 • a agglutinin in the plasma
• Blood Types (continued)
 • People with type AB blood have:
 • Agglutinogen A and agglutinogen B on the RBC
 • No agglutinin in the plasma
 • People with type O blood have:
 • Neither agglutinogen A nor B on the RBC
 • Both types of agglutinins in the plasma (a and b)
Your blood type is a classification determined by the presence or absence of specific surface antigens in RBC plasma membranes. There are four blood types based on the A and B surface antigens.

<table>
<thead>
<tr>
<th>Type A</th>
<th>Type B</th>
<th>Type AB</th>
<th>Type O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A blood has RBCs with surface antigen A only.</td>
<td>Type B blood has RBCs with surface antigen B only.</td>
<td>Type AB blood has RBCs with both A and B surface antigens.</td>
<td>Type O blood has RBCs lacking both A and B surface antigens.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If you have Type A blood, your plasma contains anti-B antibodies, which will attack Type B surface antigens.</td>
<td>If you have Type B blood, your plasma contains anti-A antibodies.</td>
<td>Type AB individuals do not have anti-A or anti-B antibodies.</td>
<td>An individual with Type O blood has plasma containing both anti-A and anti-B antibodies.</td>
</tr>
</tbody>
</table>
Formed Elements

• Blood Donations
 • Type B (packed cells) donor cannot donate to type A patient
 • The B agglutinogen of the donor will activate the b agglutinin in the plasma of the type A patient
 • Agglutination will occur
 • This is not a safe donation
• Blood Donations (continued)
 • Type AB (packed cells) donor cannot donate to type B patient
 • The A agglutinogen of the donor will activate the a agglutinin in the plasma of the type B patient
 • Agglutination will occur
 • This is not a safe donation
• Blood Donations (continued)
 • Type B (packed cells) donor *can* donate to type AB patient
 • The B agglutinogen of the donor will not activate any agglutinins of the patient because the patient does not have any agglutinins in their plasma
 • Agglutination will not occur
 • This is a safe donation
• Blood Donations (continued)
 • Type B (whole blood) donor cannot donate to type A patient
 • The B agglutinogen of the donor will activate the b agglutinin in the plasma of the type A patient
 • The a agglutinin of the donor will be activated by the A agglutinogen of the patient
 • Agglutination will occur
 • This is not a safe donation
• Blood Donations (continued)
 • Type AB (whole blood) donor cannot donate to type B patient
 • The A agglutinogen of the donor will activate the a agglutinin in the plasma of the type B patient
 • Agglutination will occur
 • This is not a safe donation
• Blood Donations (continued)
 • Type B (whole blood) donor cannot donate to type AB patient
 • The B agglutinogen of the donor will not activate any agglutinins of the patient because the patient does not have any agglutinins; however:
 • The A agglutinogen of the patient will activate the a agglutinin from the donor
 • Agglutination will occur
 • This is not a safe donation
• Blood Donations (continued)
 • Type O (packed cells) donor *can* donate to type B patient
 • The type O donor does not have any agglutinogens to activate the a agglutinin in the plasma of the patient
 • **This is a safe donation**
Blood Donations (continued)

- Type O (whole blood) donor *cannot* donate to type B patient
 - The type O donor is also donating the a and b agglutinins
 - The B agglutinogen of the patient will activate the b agglutinins from the plasma of the type O donor
- **This is not a safe donation**
The plasma contains antibodies that will react with foreign surface antigens in a process called agglutination. The cells may also break apart, an event known as hemolysis.
Formed Elements

• Leukocytes
 • There are two major classes of leukocytes consisting of a total of five major types of leukocytes
 • Granulocytes:
 • Neutrophils, eosinophils, basophils
 • Agranulocytes:
 • Monocytes, lymphocytes
Figure 20.5 Histology of White Blood Cells

- Neutrophil
- Eosinophil
- Basophil
- Monocyte
- Lymphocyte

LM x 1500
Leukocytes (continued)

- There are 6000 to 9000 per microliter of blood
 - A total WBC count is performed on an instrument called a hemocytometer
 - A low count is called leukopenia
 - An elevated count is called leukocytosis
- A differential count is performed to determine which of the leukocytes is in excess or deficient
• Leukocytes (continued)
 • Have a short life span (usually a few days)
 • When the body is compromised, the white blood cells multiply to combat the invading agent or allergen, etc.
 • Leukocytes can undergo diapedesis
 • Chemotaxis draws the leukocytes toward the invading agent
Formed Elements

- Granulocytes
 - **Neutrophils** (normal range is 50–70 percent)
 - Granules contain chemicals to kill bacteria
 - Typically the first WBC at the bacterial site
 - Very active phagocytic cells
 - Nucleus is multilobed
Figure 20.5 Histology of White Blood Cells
Formed Elements

• Granulocytes
 • **Eosinophils** (normal range is 2–4 percent)
 • Granules release chemicals that reduce inflammation
 • Attack a foreign substance that has reacted with circulating antibodies (such as an allergic reaction or parasites)
 • Typically have a bilobed nucleus
Figure 20.5 Histology of White Blood Cells

- Neutrophil
- Eosinophil
- Basophil
- Monocyte
- Lymphocyte

LM x 1500
Formed Elements

• Granulocytes
 • **Basophils** (normal range less than 1 percent)
 • Granules release **histamine** and **heparin**
 • Histamine dilates blood vessels
 • Heparin prevents abnormal blood clotting
 • Nucleus is usually hidden due to all the granules
Figure 20.5 Histology of White Blood Cells

- Neutrophil
- Eosinophil
- Basophil
- Monocyte
- Lymphocyte

LM x 1500
Formed Elements

• Agranulocytes
 • **Monocytes** (normal range is 2–8 percent)
 • Large phagocytic cells
 • Nucleus is kidney-shaped or large oval-shaped
 • Release chemicals to attract other phagocytic cells
 • Release chemicals to attract fibroblasts
 • **Fibroblasts** produce collagen fibers to surround an infected site
 • These collagen fibers can produce scar tissue
 • Scar tissue forms a wall around the pathogen to prevent it from spreading
Figure 20.5 Histology of White Blood Cells

- Neutrophil
- Eosinophil
- Basophil
- Monocyte
- Lymphocyte

LM x 1500
Formed Elements

• Agranulocytes
 • **Lymphocytes** (normal range is 20–30 percent)
 • Responsible for specific immunity
 • Can differentiate to form:
 • T cells
 • B cells
 • NK cells
 • Nucleus is typically large and round leaving a small halo around the entire nucleus or part of it
Figure 20.5 Histology of White Blood Cells

- Neutrophil
- Eosinophil
- Basophil
- Monocyte
- Lymphocyte

LM x 1500
Formed Elements

• Agranulocytes
 • T cells
 • Attack foreign cells directly
 • B cells
 • Secrete antibodies to attack foreign cells
• NK cells
 • Responsible for immune surveillance
Formed Elements

• Platelets

 • Derived from **megakaryocytes**
 • Megakaryocytes will fragment forming bits and pieces of membrane-enclosed packets of chemicals
 • The main chemical is platelet thromboplastin factor
 • About 350,000 per microliter of blood
 • Formerly called **thrombocytes**
Figure 20.6 Histology of Megakaryocytes and Platelet Formation

Nutrient artery

Venous sinuses

Red bone marrow

Developing erythrocytes and granulocytes

Adipocyte

Bone marrow section

LM × 673

Megakaryocyte

Platelets

Red blood cell
Formed Elements

• Platelets
 • Thrombocytopenia
 • Lower than normal number of platelets
 • Thrombocytosis
 • Higher than normal number of platelets
Formed Elements

• Platelet Function
 • Involved in blood clotting (hemostasis)
 • Release chemicals to initiate the clotting process (platelet thromboplastin factor)
 • Clump together to form a platelet plug
 • Contain actin and myosin that function to contract the clot
Hemopoiesis

• Hemopoiesis (blood formation)
 • Begins with pluripotential stem cells
 • Differentiate to form two cells:
 • Myeloid stem cells
 • Lymphatic stem cells
Hemopoiesis

• Hemopoiesis
 • Myeloid stem cells differentiate to eventually form:
 • Erythrocytes
 • Platelets
 • Basophils
 • Eosinophils
 • Neutrophils
 • Monocytes
Hemopoiesis

• Hemopoiesis (continued)
 • Lymphatic stem cells differentiate to eventually form:
 • Lymphocytes
Hemopoiesis

• Details of Hemopoiesis (blood formation)
 • Begin with **pluripotential stem cells**
 • Differentiate to form **myeloid stem cells**
 • Differentiate to form **progenitor cells**
 • Differentiate to form **proerythroblast cells**
 • Differentiate to form **erythroblast cells**
 • Differentiate to form **reticulocytes**
 • Differentiate to form **erythrocytes**
Hemopoiesis

• Details of Hemopoiesis (continued)
 • Begin with **pluripotential stem cells**
 • Differentiate to form **myeloid stem cells**
 • Differentiate to form **progenitor cells**
 • Differentiate to form **megakaryoblasts**
 • Differentiate to form **platelets**
Details of Hemopoiesis (continued)

- Begin with pluripotential stem cells
- Differentiate to form myeloid stem cells
- Differentiate to form progenitor cells
- Differentiate to form myeloblasts and monoblasts
 - Myeloblasts differentiate to form myelocytes
 - Monoblasts differentiate to form promonocytes
Figure 20.8 The Origins and Differentiation of Formed Elements

- Pluripotential Stem Cells
 - Myeloid Stem Cells
 - Progenitor Cells
 - Blasts
 - Myelocytes
 - Band Cells
 - Reticulocyte
 - Erythroblast stages
 - Proerythroblast
 - Ejection of nucleus
 - Reticulocyte
 - Lymphatic Stem Cells
 - Proerythroblast
 - Megakaryocyte
 - Platelets
 - Erythrocytes
 - Basophils
 - Eosinophils
 - Neutrophils
 - Monocytes
 - Lymphocytes
 - Granulocytes
 - Agranulocytes
Hemopoiesis

• Details of Hemopoiesis (continued)
 • Myelocytes differentiate to form **band cells** (nucleus forms a band)
 • Band cells form segmented cells (nucleus becomes segmented)
 • Basophils
 • Eosinophils
 • Neutrophils
 • Promonocytes differentiate to form **monocytes**
Hemopoiesis

• Details of Hemopoiesis (continued)
 • Begin with pluripotential stem cells
 • Differentiate to form lymphatic stem cells
 • Differentiate to form lymphoblasts
 • Differentiate to form prolymphocytes
 • Differentiate to form lymphocytes
 • Differentiate to form:
 • B cells
 • T cells
 • NK cells
Figure 20.8 The Origins and Differentiation of Formed Elements

- Red bone marrow
- Pluripotential Stem Cells
 - Myeloid Stem Cells
 - Lymphatic Stem Cells
- Progenitor Cells
- Blast Cells
- Myelocytes
- Band Cells
- Erythroblast stages
- Ejection of nucleus
- Megakaryocyte
- Platelets
- Erythrocyte

- Red Blood Cells (RBCs)
- White Blood Cells
 - Basophil
 - Eosinophil
 - Neutrophil
 - Monocyte
 - Lymphocyte
 - Granulocytes
 - Agranulocytes

© 2015 Pearson Education, Inc.