Chapter 16
Mineral Resources
Overview of Chapter 16

- Introduction to Minerals
- Environmental Impact of Minerals
- An International Perspective
- Increasing the Supply of Minerals
- Substitution and Conservation
Introduction to Minerals

- **Minerals**
 - Elements or compounds of elements that occur naturally in Earth’s crust

- **Rocks**
 - Naturally formed aggregates of minerals

- **Examples of Minerals**
 - Concrete (mixture of sand, gravel and limestone)
Important Minerals and Their Uses

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>Aircraft, motor vehicles, packaging (cans, foil), water treatment</td>
</tr>
<tr>
<td>Chromium</td>
<td>Chrome plate, dyes and paints, steel alloys (cutlery)</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Corrosion and wear-resistant alloys, pigments (cobalt blue)</td>
</tr>
<tr>
<td>Gold</td>
<td>Jewelry, money, restorative dentistry</td>
</tr>
<tr>
<td>Iron</td>
<td>Steel (alloy of iron) buildings and machinery</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Beverage cans, electronic devices, firecrackers, flares</td>
</tr>
<tr>
<td>Mercury</td>
<td>Industrial chemicals, electric and electronic applications, batteries</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>High-temperature alloys for aircraft, industrial motors</td>
</tr>
</tbody>
</table>

Table 16.1 Some Important Minerals and Their Uses.
Mineral Distribution and Formation

- Abundant minerals in crust
 - Aluminum and iron
- Scarce minerals in crust
 - Copper, chromium, and molybdenum
- Distributed unevenly across globe
 - If found in low abundance, mining is not profitable
Formation of Mineral Deposits

- **Result of natural processes**
 - **Magmatic concentration**
 - As magma cools heavier elements (Fe and Mg) settle
 - Responsible for deposits of Fe, Cu, Ni, Cr
 - **Hydrothermal processes**
 - Minerals are carried and deposited by water heated deep in earth’s crust
 - **Sedimentation**
 - Weathered particles are transported by water and deposited as sediment on sea floor or shore
 - **Evaporation**
 - Salts are left behind after water body dries up
Discovering Mineral Deposits

- Scientists (geologists) use a variety of instruments and measurements
 - Aerial or satellite photography
 - Seismographs
- Combine this with knowledge of how minerals are formed
Extracting Minerals

- **Surface Mining**
 - Mineral and energy resources are extracted near Earth’s surface by removing soil, subsoil and overlying rock strata
 - More common because less expensive
 - Two kinds: open pit and strip mining

- **Subsurface Mining**
 - Mineral and energy resources are extracted from deep underground deposits
 - Two kinds: shaft mine and slope mine
Strip mining removes overburden along narrow strips to reach the ore beneath.
Processing Minerals

- **Smelting** - process in which ore is melted at high temps to separate impurities from the molten metal.
Environmental Impacts of Mining

- Disturbs large area
 - Prone to erosion
- Uses large quantities of water
 - Must pump water out of mine to keep it dry
- Acid Mine Drainage (AMD)
 - Pollution caused when sulfuric acid and dissolved lead, arsenic or cadmium wash out of mines into nearby waterways
Acid Mine Drainage
Environmental Impacts of Refining Minerals

Table 16.2 Ore and Waste Production for Selected Minerals

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Amount of Mined Ore (Million Tons)</th>
<th>Percentage of Ore That Becomes Waste During Refining*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron ore</td>
<td>2958</td>
<td>60</td>
</tr>
<tr>
<td>Copper</td>
<td>1663</td>
<td>99</td>
</tr>
<tr>
<td>Gold</td>
<td>745</td>
<td>99.99</td>
</tr>
<tr>
<td>Lead</td>
<td>267</td>
<td>97.5</td>
</tr>
<tr>
<td>Aluminum</td>
<td>128</td>
<td>81</td>
</tr>
</tbody>
</table>

*Data do not include the overburden of rock and soil that originally covered the ore deposits.
Environmental Impacts of Refining Minerals

- 80% or more of mined ore consists of impurities - called tailings
 - Contain toxic materials
- Smelting plants emit large amounts of air pollutants
- Requires a lot of energy (fossil fuels combustion)
Case-In-Point Copper Basin, TN
Restoration of Mining Lands

- Goals: prevent further degradation and erosion of land, eliminate local sources of toxins and make land productive for another purpose
Restoration of Mining Land

- Creative Approaches
 - Wetlands
 - Trap and filter pollutants before they get into streams
 - Initially expensive, but cost effective compared to using lime to decrease acidity
 - Phytoremediation
 - Use of specific plants to absorb and accumulate toxic materials in soil
Minerals: An International Perspective

- **Highly developed countries**
 - Rely on mineral deposits in developing countries
 - They have exhausted their own supplies

- **Developing countries**
 - Governments lack financial resources to handle pollution
 - Acid mine drainage, air and water pollution
North American Consumption of Selected Metals

The bar chart shows the U.S. and Canadian consumption of selected metals as a percent of world total consumption.

- **Lead**: Highest consumption with a value close to 36.
- **Aluminum**: Slightly lower than Lead, around 32.
- **Copper**: Follows Aluminum, approximately 30.
- **Zinc**: Lower than Copper, around 24.
- **Gold**: Lowest consumption among the listed metals, around 6.
Will We Run Out of Important Metals?

- **Mineral Reserves**
 - Mineral deposits that have been identified and are currently profitable to extract

- **Mineral Resources**
 - Any undiscovered mineral deposits or known deposits of low-grade ore that are currently unprofitable to extract

- Estimates of reserves and resources fluctuate with economy
Increasing Supply of Minerals – Locating and Mining New Deposits

- Many known mineral deposits have not yet been exploited
 - Difficult to access
 - Insufficient technology
 - Located too deep
 - Ex: 10 km or deeper
Minerals in Antarctica

- No substantial mineral deposits identified to date
- Antarctica Treaty (1961)
 - Limits activity to peaceful uses (i.e., scientific studies)
- Madrid Protocol (1990)
 - Moratorium on mineral exploration and development for minimum of 50 years
Minerals from the Ocean

- May provide us with future supplies
 - Extracting minerals from seawater
 - Mining seafloor - Manganese nodules
Advance Mining and Processing Technologies

- Special techniques to make use of large, low-grade mineral deposits world-wide
- Biomining
 - Using microorganisms to extract minerals from low-grade ores
Finding Mineral Substitutes

- Important goal in manufacturing
- Substitute expensive/scarce mineral resources for inexpensive/abundant ones
- Examples:
 - Using plastic, glass or aluminum in place of tin
 - Using glass fibers instead of copper wiring in telephone cables
Mineral Conservation

- Includes reuse and recycling of existing mineral supplies
 - Reuse - using items over and over again
 - Reduces both mineral consumption and pollution
 - Recycling - converting item into new product
 - Reduces land destruction from mining
 - Reduces solid waste
Changing Our Mineral Requirements

- Must change our “throw away” mentality

![Graph showing mineral resource depletion over time with options for use, recycling, and substitution](image-url)
(a) Massive amounts of solid waste are produced at all steps in the traditional flow of minerals, from mining the mineral to discarding the used-up product.

(b) The flow of minerals in a low-waste society is more complex, with sustainable manufacturing, consumer reuse, and consumer recycling practiced at intermediate steps.