Chapter 12

The Cardiovascular System: The Heart

PowerPoint® Lecture Slides
prepared by Jason LaPres
Lone Star College - North Harris

Copyright © 2010 Pearson Education, Inc.
Introduction to Cardiovascular System

• The Pulmonary Circuit
 – Carries blood to and from gas exchange surfaces of lungs

• The Systemic Circuit
 – Carries blood to and from the body

• Blood alternates between pulmonary circuit and systemic circuit
Introduction to Cardiovascular System

• Three Types of Blood Vessels

 – Arteries:
 • Carry blood *away from* the heart

 – Veins:
 • Carry blood *to* the heart

 – Capillaries:
 • Networks *between* arteries and veins
• Capillaries
 – Also called exchange vessels
 – Exchange materials between blood and tissues
 – Materials include dissolved gases, nutrients, wastes
Overview of the Cardiovascular System

Figure 12-1
12-1 The heart is a four-chambered organ, supplied by coronary circulation, that pumps oxygen-poor blood to the lungs and oxygen-rich blood to the rest of the body.
Four Chambers of the Heart

• Right Atrium
 – Collects blood from systemic circuit

• Right Ventricle
 – Pumps blood to pulmonary circuit

• Left Atrium
 – Collects blood from pulmonary circuit

• Left Ventricle
 – Pumps blood to systemic circuit
Anatomy of the Heart

• Great veins and arteries at the base
• Pointed tip is **apex**
• Surrounded by pericardial sac
• Sits between two pleural cavities in the **mediastinum**
The Location of the Heart in the Thoracic Cavity

Figure 12-2a
Anatomy of the Heart

• The Pericardium
 – Double lining of the pericardial cavity
 – Parietal pericardium:
 • Outer layer
 • Forms inner layer of pericardial sac
 – Visceral pericardium:
 • Inner layer of pericardium
Anatomy of the Heart

• The Pericardium
 – Pericardial cavity:
 • Is between parietal and visceral layers
 • Contains pericardial fluid
 – Pericardial sac:
 • Fibrous tissue
 • Surrounds and stabilizes the heart
The Location of the Heart in the Thoracic Cavity

Figure 12-2b
The Surface Anatomy of the Heart

• Atria
 – Thin walled
 – Expandable outer auricle (atrial appendage)

• Sulci
 – Coronary sulcus: divides atria and ventricles
 – Anterior interventricular sulcus and posterior interventricular sulcus:
 • separate left and right ventricles
 • contain blood vessels of cardiac muscle
The Surface Anatomy of the Heart

Figure 12-3a

Copyright © 2010 Pearson Education, Inc.
The Heart Wall

• **Epicardium** (Outer Layer)
 – Visceral pericardium
 – Covers the heart

• **Myocardium** (Middle Layer)
 – Muscular wall of the heart
 – Concentric layers of cardiac muscle tissue
 – Atrial myocardium wraps around great vessels
 – Two divisions of ventricular myocardium

• **Endocardium** (Inner Layer)
 – Simple squamous epithelium
The Heart Wall and Cardiac Muscle

Figure 12-4 a,b
The Heart Wall

- Cardiac Muscle Tissue
 - Intercalated discs:
 - Interconnect **cardiac muscle cells**
 - Secured by desmosomes
 - Linked by gap junctions
 - Convey force of contraction
 - Propagate action potentials
Cardiac Muscle Cells

(c) Cardiac muscle tissue

(d) Cardiac muscle cells

Figure 12-4 c,d
Internal Anatomy and Organization

- **Interatrial septum**: separates atria
- **Interventricular septum**: separates ventricles
- **Atrioventricular (AV) valves**
 - Connect right atrium to right ventricle and left atrium to left ventricle
 - The fibrous flaps that form bicuspid (2) and tricuspid (3) valves
 - Permit blood flow in one direction: atria to ventricles

The Heart: Valves
Internal Anatomy and Organization

• The Right Atrium
 – Superior vena cava:
 • Receives blood from head, neck, upper limbs, and chest
 – Inferior vena cava:
 • Receives blood from trunk, viscera, and lower limbs
 – Coronary sinus:
 • Cardiac veins return blood to coronary sinus
 • Coronary sinus opens into right atrium
Sectional Anatomy of the Heart

Figure 12-5
• The Right Ventricle
 – Free edges attach to chordae tendineae from papillary muscles of ventricle
 – Prevent valve from opening backward
 – Right atrioventricular (AV) valve:
 • Also called tricuspid valve
 • Opening from right atrium to right ventricle
 • Has three cusps
 • Prevents backflow
Internal Anatomy and Organization

• The Left Atrium
 – Blood gathers into *left* and *right* pulmonary veins
 – Pulmonary veins deliver to left atrium
 – Blood from left atrium passes to left ventricle through *left atrioventricular* (AV) valve
 – A two-cusped *bicuspid valve* or *mitral valve*
The Left Ventricle

- Holds same volume as right ventricle
- Is larger; muscle is thicker and more powerful
- Similar internally to right ventricle but does not have moderator band
- Systemic circulation:
 - Blood leaves left ventricle through aortic valve into ascending aorta
 - Ascending aorta turns (aortic arch) and becomes descending aorta
Internal Anatomy and Organization

• Structural Differences between the Left and Right Ventricles
 – Right ventricle wall is thinner, develops less pressure than left ventricle
 – Right ventricle is pouch-shaped; left ventricle is round
• The Heart Valves
 – Two pairs of one-way valves prevent backflow during contraction
 – Atrioventricular (AV) valves:
 • Between atria and ventricles
 • Blood pressure closes valve cusps during ventricular contraction
 • Papillary muscles tense chordae tendineae: prevent valves from swinging into atria
• The Heart Valves

 – **Semilunar valves:**

 • Pulmonary and aortic tricuspid valves
 • Prevent backflow from pulmonary trunk and aorta into ventricles
 • Have no muscular support
 • Three cusps support like tripod
Aortic Sinuses

- At base of ascending aorta
- Sacs that prevent valve cusps from sticking to aorta
- Origin of right and left coronary arteries
Figure 12-6a

The Valves of the Heart
Figure 12-6b
• The Cardiac Skeleton of the Heart
 – Physically support cardiac muscle fibers
 – Distribute forces of contraction
 – Add strength and prevent overexpansion of heart
 – Elastic fibers return heart to original shape after contraction
Internal Anatomy and Organization

• The Cardiac (Fibrous) Skeleton
 – Four bands around heart valves and bases of pulmonary trunk and aorta
 – Stabilize valves
 – Electrically insulate ventricular cells from atrial cells
The Blood Supply to the Heart = Coronary Circulation

- **Coronary arteries** and **cardiac veins**
- Supplies blood to muscle tissue of heart
• The Coronary Arteries
 – Left and right
 – Originate at aortic sinuses
 – High blood pressure, elastic rebound forces blood through coronary arteries between contractions
Internal Anatomy and Organization

• Right Coronary Artery
 – Supplies blood to:
 • Right atrium
 • Portions of both ventricles
 • Cells of sinoatrial (SA) and atroventricular nodes
 • **Marginal arteries** (surface of right ventricle)
 • **Posterior interventricular artery**
• Left Coronary Artery
 – Supplies blood to:
 • Left ventricle
 • Left atrium
 • Interventricular septum
Two main branches of left coronary artery
 - Circumflex artery
 - Anterior interventricular artery

Arterial Anastomoses
 - Interconnect anterior and posterior interventricular arteries
 - Stabilize blood supply to cardiac muscle
• The Cardiac Veins

 – **Great cardiac vein:**
 • Drains blood from area of anterior interventricular artery into coronary sinus

 – **Anterior cardiac veins:**
 • Empties into right atrium

 – **Posterior cardiac vein, middle cardiac vein, and small cardiac vein:**
 • Empty into great cardiac vein or coronary sinus
Coronary Circulation

Figure 12-7a
12-2 Contractile cells and the conducting system produce each heartbeat, and an electrocardiogram records the associated electrical events
The Conducting System

• Heartbeat
 – A single contraction of the heart
 – The entire heart contracts in series:
 • First the atria
 • Then the ventricles
The Conducting System

- Two Types of Cardiac Muscle Cells
 - Contractile cells:
 - Produce contractions that propel blood
 - Conducting system:
 - Controls and coordinates heartbeat
The Action Potential in Skeletal and Cardiac Muscle

1. **Rapid Depolarization**
 - Cause: Na\(^+\) entry
 - Duration: 3–5 msec
 - Ends with: Closure of voltage-gated sodium channels

2. **The Plateau**
 - Cause: Ca\(^{2+}\) entry
 - Duration: ~175 msec
 - Ends with: Closure of calcium channels

3. **Repolarization**
 - Cause: K\(^+\) loss
 - Duration: 75 msec
 - Ends with: Closure of potassium channels

Figure 12-8a
The Action Potential in Skeletal and Cardiac Muscle

Figure 12-8b
• The Role of Calcium Ions in Cardiac Contractions
 – Contraction of a cardiac muscle cell is produced by an increase in calcium ion concentration around myofibrils
Contractile Cells

• The Role of Calcium Ions in Cardiac Contractions

 – 20% of calcium ions required for a contraction:
 • Calcium ions enter plasma membrane during plateau phase

 – Arrival of extracellular Ca^{2+}:
 • Triggers release of calcium ion reserves from sarcoplasmic reticulum
The Conducting System

- A system of specialized cardiac muscle cells
 - Initiates and distributes electrical impulses that stimulate contraction

- **Automaticity**
 - Cardiac muscle tissue contracts automatically
The Conducting System

• Structures of the Conducting System
 – Sinoatrial (SA) node — wall of right atrium
 – Atrioventricular (AV) node — junction between atria and ventricles
 – Conducting cells — throughout myocardium
The Conducting System

• Conducting Cells
 – Interconnect SA and AV nodes
 – Distribute stimulus through myocardium
 – In the atrium:
 • Internodal pathways
 – In the ventricles:
 • AV bundle and the bundle branches
The Conducting System

• Heart Rate
 – SA node generates 70 to 80 action potentials per minute
 – AV node generates 40 to 60 action potentials per minute
The Conducting System

Figure 12-9a

- Sinoatrial (SA) node
- Atrioventricular (AV) node
- AV bundle
- Bundle branches
- Purkinje fibers
STEP 1

SA node activity and atrial activation begin.

Time = 0

Figure 12-9
The Conducting System

STEP 2

Stimulus spreads across the atrial surfaces and reaches the AV node.

Elapsed time = 50 msec

Figure 12-9

Copyright © 2010 Pearson Education, Inc.
STEP 3

There is a 100-msec delay at the AV node. Atrial contraction begins.

AV bundle

Bundle branches

Elapsed time = 150 msec

Figure 12-9
The impulse travels along the interventricular septum within the AV bundle and the bundle branches to the Purkinje fibers.

Elapsed time = 175 msec

Figure 12-9
The impulse is distributed by Purkinje fibers and relayed throughout the ventricular myocardium. Atrial contraction is completed, and ventricular contraction begins.

Elapsed time = 225 msec

Figure 12-9
The Conducting System

• Abnormal Pacemaker Function
 – **Bradycardia**: abnormally slow heart rate
 – **Tachycardia**: abnormally fast heart rate
 – **Ectopic pacemaker**:
 • Abnormal cells
 • Generate high rate of action potentials
 • Bypass conducting system
 • Disrupt ventricular contractions
The Electrocardiogram

• A recording of electrical events in the heart
• Obtained by electrodes at specific body locations
• Abnormal patterns diagnose damage
The Electrocardiogram

• Features of an ECG
 – P wave:
 • Atria depolarize
 – QRS complex:
 • Ventrices depolarize
 – T wave:
 • Ventricles repolarize
Figure 12-10a
Figure 12-10b

ECG rhythm strip

- **P wave**: Impulse spreads across atria, triggering atrial contractions
- **QRS complex**: Impulse spreads to ventricles, triggering ventricular contractions
- **T wave**: Ventricles return to resting state

Time: 800 msec

Millivolts: +1 (positive), 0 (neutral), -1 (negative)
12-3 Events during a complete heartbeat make up a cardiac cycle
The Cardiac Cycle

• Cardiac cycle = the period between the start of one heartbeat and the beginning of the next

• Includes both contraction and relaxation
The Cardiac Cycle

• Phases of the Cardiac Cycle
 – Within any one chamber:
 • **Systole** (contraction)
 • **Diastole** (relaxation)
(a) Atrial systole begins: Atrial contraction forces a small amount of additional blood into relaxed ventricles.

(b) Atrial systole ends, atrial diastole begins

(c) Ventricular systole—first phase: Ventricular contraction pushes AV valves closed but does not create enough pressure to open semilunar valves.

(d) Ventricular systole—second phase: As ventricular pressure rises and exceeds pressure in the arteries, the semilunar valves open and blood is ejected.

(e) Ventricular diastole—early: As ventricles relax, pressure in ventricles drops; blood flows back against cusps of semilunar valves and forces them closed. Blood flows into the relaxed atria.

(f) Ventricular diastole—late: All chambers are relaxed. Ventricles fill passively.

Cardiac cycle
The Cardiac Cycle

• Blood Pressure

 – In any chamber:
 • Rises during systole
 • Falls during diastole

 – Blood flows from high to low pressure:
 • Controlled by timing of contractions
 • Directed by one-way valves
• Cardiac Cycle and Heart Rate
 – At 75 beats per minute:
 • Cardiac cycle lasts about 800 msecs
 – When heart rate increases:
 • All phases of cardiac cycle shorten, particularly diastole
Heart Sounds

- **S₁**
 - Loud sounds
 - Produced by AV valves

- **S₂**
 - Loud sounds
 - Produced by semilunar valves

- **S₃, S₄**
 - Soft sounds
 - Blood flow into ventricles and atrial contraction
12-4 Heart dynamics examines the factors that affect cardiac output
Cardiodynamics

- Cardiac Output
- \(CO = HR \times SV \)
- \(CO \) = cardiac output (mL/min)
- \(HR \) = heart rate (beats/min)
- \(SV \) = stroke volume (mL/beat)
Cardiodynamics

• Factors Affecting Cardiac Output

 – Cardiac output:
 • Adjusted by changes in heart rate or stroke volume

 – Heart rate:
 • Adjusted by autonomic nervous system or hormones

 – Stroke volume:
 • Adjusted by changing EDV or ESV
Blood Volume Reflexes

• Atrial Reflex
 – Also called Bainbridge reflex
 – Adjusts heart rate in response to venous return
 – Stretch receptors in right atrium:
 • Trigger increase in heart rate
 • Through increased sympathetic activity
Autonomic Innervation

• Factors Affecting the Heart Rate
 – Cardiac plexuses: innervate heart
 – Vagus nerves (X): carry parasympathetic preganglionic fibers to small ganglia in cardiac plexus
 – Cardiac centers of medulla oblongata:
 • **Cardioacceleratory center** controls sympathetic neurons (increases heart rate)
 • **Cardioinhibitory center** controls parasympathetic neurons (slows heart rate)
Figure 12-12

- Cardioinhibitory center
- Cardioacceleratory center
- Medulla oblongata
- Vagus nerve (N X)
- Spinal cord
- Sympathetic preganglionic fiber
- Sympathetic ganglia
- Sympathetic postganglionic fiber
- Cardiac nerve
- Parasympathetic preganglionic fiber
- Synapses in cardiac plexus
- Parasympathetic postganglionic fibers
Autonomic Innervation

- Autonomic Affects on Stroke Volume
 - Sympathetic stimulation:
 - NE released by postganglionic fibers of cardiac nerves
 - Epinephrine and NE released by suprarenal (adrenal) medullae
 - Causes ventricles to contract with more force
 - Increases ejection fraction and decreases ESV
Autonomic Innervation

• Autonomic Affects on Stroke Volume
 – Parasympathetic activity:
 • Acetylcholine released by vagus nerves
 • Reduces force of cardiac contractions
Hormones

• Many hormones affect heart contraction

• Pharmaceutical drugs mimic hormone actions
 – Stimulate or block beta receptors
 – Affect calcium ions (e.g., calcium channel blockers)