Chapter 11

The Cardiovascular System: Blood

PowerPoint® Lecture Slides
prepared by Jason LaPres
Lone Star College - North Harris
Introduction to the Cardiovascular System

• A circulating transport system
 – A pump (the heart)
 – A conducting system (blood vessels)
 – A fluid medium (blood):
 • Is specialized fluid of connective tissue
 • Contains cells suspended in a fluid matrix
Introduction to the Cardiovascular System

• To transport materials to and from cells
 – Oxygen and carbon dioxide
 – Nutrients
 – Hormones
 – Immune system components
 – Waste products
11-1 Blood has several important functions and unique physical characteristics
Functions of Blood

- Transport of dissolved substances
- Regulation of pH and ions
- Restriction of fluid losses at injury sites
- Defense against toxins and pathogens
- Stabilization of body temperature
Composition of Blood

• Whole Blood

 – Plasma:
 • Fluid consisting of:
 – water
 – dissolved plasma proteins
 – other solutes

 – Formed elements:
 • All cells and solids
The Composition of Whole Blood

Figure 11-1

Copyright © 2010 Pearson Education, Inc.
The Composition of Whole Blood

Sample of whole blood

- Formed elements (37–54%)

(c) Formed elements of blood

- Platelets
- White blood cells 0.1%
- Red blood cells 99.9%

PLATELETS

- Neutrophils (50–70%)
- Eosinophils (2–4%)
- Basophils (<1%)
- Lymphocytes (20–30%)
- Monocytes (2–8%)

WHITE BLOOD CELLS

- Neutrophils (50–70%)
- Eosinophils (2–4%)
- Basophils (<1%)
- Lymphocytes (20–30%)
- Monocytes (2–8%)

RED BLOOD CELLS

Figure 11-1

Copyright © 2010 Pearson Education, Inc.
The Composition of Whole Blood

• Three Types of Formed Elements
 – Red blood cells (RBCs) or erythrocytes:
 • Transport oxygen
 – White blood cells (WBCs) or leukocytes:
 • Part of the immune system
 – Platelets:
 • Cell fragments involved in clotting
The Composition of Whole Blood

- Hemopoiesis
 - Process of producing formed elements
 - By myeloid and lymphoid stem cells

- Fractionation
 - Process of separating whole blood for clinical analysis:
 - Into plasma and formed elements
The Composition of Whole Blood

- Blood volume (liters) = 7% of body weight (kilograms)
 - Adult male: 5 to 6 liters
 - Adult female: 4 to 5 liters
Blood Collection and Analysis

• Three General Characteristics of Blood
 – 38°C (100.4°F) is normal temperature
 – High viscosity
 – Slightly alkaline pH (7.35–7.45)
11-2 Plasma, the fluid portion of blood, contains significant quantities of plasma proteins.
The Composition of Plasma

• Makes up 46% to 63% of blood volume
• More than 90% of plasma is water
• Extracellular fluids
 – Interstitial fluid (IF) and plasma
 – Materials plasma and IF exchange across capillary walls:
 • Water
 • Ions
 • Small solutes
The Composition of Plasma

• Differences between Plasma and IF
 – Levels of O_2 and CO_2
 – Concentrations and types of dissolved proteins:
 • Plasma proteins do not pass through capillary walls
Plasma Proteins

- **Albumins** (60%)
 - Transport substances such as fatty acids, thyroid hormones, and steroid hormones

- **Globulins** (35%)
 - Antibodies, also called immunoglobulins
 - Transport globulins (small molecules): hormone-binding proteins, metalloproteins, apolipoproteins (**lipoproteins**), and steroid-binding proteins

- **Fibrinogen** (4%)
 - Molecules that form clots and produce long, insoluble strands of fibrin
Plasma Proteins

• Serum
 – Liquid part of a blood sample:
 • In which dissolved fibrinogen has converted to solid fibrin

• Other Plasma Proteins
 – 1% of plasma:
 • Changing quantities of specialized plasma proteins
 • Enzymes and hormones
Plasma Proteins

• Origins of Plasma Proteins
 – 90% + made in liver
 – Antibodies made by plasma cells
 – Peptide hormones made by endocrine organs
11-3 Red blood cells, formed by erythropoiesis, contain hemoglobin that can be recycled
Red Blood Cells

- Red blood cells (RBCs) make up 99.9% of blood’s formed elements

- Hemoglobin
 - The red pigment that gives whole blood its color
 - Binds and transports oxygen and carbon dioxide
Abundance of RBCs

• **Red blood cell count**: the number of RBCs in 1 microliter of whole blood
 – Male: 4.5–6.3 million
 – Female: 4.2–5.5 million

• **Hematocrit** (packed cell volume, PCV): percentage of RBCs in centrifuged whole blood
 – Male: 40–54
 – Female: 37–47
Structure of RBCs

• Small and highly specialized discs
• Thin in middle and thicker at edge
 – Importance of RBC shape and size:
 • High surface-to-volume ratio:
 – Quickly absorbs and releases oxygen
 • Discs bend and flex entering small capillaries
Figure 11-2

(a) Blood smear

(b) SEM of RBCs

(c) Sectional view of RBC

0.45–1.16 μm 2.31–2.85 μm
7.2–8.4 μm
Hemoglobin Structure and Function

- Hemoglobin (Hb)
 - Protein molecule that transports respiratory gases
 - Normal hemoglobin (adult male):
 - 14–18 g/dL whole blood
 - Normal hemoglobin (adult female):
 - 12–16 g/dL whole blood
Hemoglobin Structure and Function

• Hemoglobin Structure
 – Complex quaternary structure
 – Four globular protein subunits:
 • Each with one molecule of heme
 • Each heme contains one iron ion
 – Iron ions:
 • Associate easily with oxygen (oxyhemoglobin)
 » OR
 • Dissociate easily from oxygen (deoxyhemoglobin)
Hemoglobin Structure and Function

• Lack nuclei, mitochondria, and ribosomes
 – Means no repair and *anaerobic* metabolism
 – Live about 120 days
Hemoglobin Structure and Function

• Hemoglobin Function
 – Carries oxygen
 – With low oxygen (peripheral capillaries):
 • Hemoglobin releases oxygen
 • Binds carbon dioxide and carries it to the lungs
Abnormal Hemoglobin

Figure 11-3

(a) Normal RBC

(b) Sickled RBC
RBC Life Span and Circulation

- RBC Formation and Turnover
 - 1% of circulating RBCs wear out per day:
 - About 3 million RBCs per second
 - Macrophages of liver, spleen, and bone marrow:
 - Monitor RBCs
 - Engulf RBCs before membranes rupture (hemolyze)
• Hemoglobin Recycling
 – Phagocytes break hemoglobin into components:
 • Globular proteins to amino acids
 • Heme to *biliverdin*
 • Iron
 – Hemoglobinuria:
 • Hemoglobin breakdown products in urine due to excess hemolysis in bloodstream
 – Hematuria:
 • Whole red blood cells in urine due to kidney or tissue damage
Iron Recycling

- Iron removed from heme leaving biliverdin
- To transport proteins (transferrin)
- To storage proteins (ferritin and hemosiderin)
Figure 11-4

Copyright © 2010 Pearson Education, Inc.
RBC Formation

• RBC Production
 – Erythropoiesis:
 • Occurs only in **myeloid tissue** (red bone marrow) in adults
 • Stem cells mature to become RBCs

• Hemocytoblasts
 – Stem cells in myeloid tissue divide to produce:
 • **Myeloid stem cells**: become RBCs, some WBCs
 • **Lymphoid stem cells**: become lymphocytes
Figure 11-5
Red Blood Cells

• Regulation of Erythropoiesis
 – Building red blood cells requires:
 • Amino acids
 • Iron
 • Vitamins B\textsubscript{12}, B\textsubscript{6}, and folic acid:
 – pernicious anemia:
 » low RBC production
 » due to unavailability of vitamin B\textsubscript{12}
Red Blood Cells

• Stimulating Hormones
 – Erythropoietin (EPO):
 • Also called erythropoiesis-stimulating hormone
 • Secreted when oxygen in peripheral tissues is low (hypoxia)
 • Due to disease or high altitude
Figure 11-6

Erythropoiesis
<table>
<thead>
<tr>
<th>TEST</th>
<th>DETERMINES</th>
<th>TERMS ASSOCIATED WITH ABNORMAL VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEMATOCRIT (HCT)</td>
<td>Percentage of formed elements in whole blood</td>
<td>ELEVATED</td>
</tr>
<tr>
<td></td>
<td>Normal = 37–54%</td>
<td>Polycythemia (may result from erythrocytosis or leukocytosis)</td>
</tr>
<tr>
<td>COMPLETE BLOOD COUNT (CBC)</td>
<td>Number of RBCs per mL of whole blood</td>
<td>Erythrocytosis/polycythemia</td>
</tr>
<tr>
<td>RBC count</td>
<td>Normal = 4.2–6.3 million/μL</td>
<td>Anemia</td>
</tr>
<tr>
<td>Hemoglobin concentration (Hb)</td>
<td>Concentration of hemoglobin in blood</td>
<td>Anemia</td>
</tr>
<tr>
<td></td>
<td>Normal = 12–18 g/dL</td>
<td>Reticulocytosis</td>
</tr>
<tr>
<td>Reticulocyte count (Retic.)</td>
<td>Circulating percentage of reticulocytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal = 0.8%</td>
<td></td>
</tr>
<tr>
<td>Mean corpuscular volume (MCV)</td>
<td>Average volume of a single RBC</td>
<td>Macrocytic</td>
</tr>
<tr>
<td></td>
<td>Normal = 82–101μm³ (normocytic)</td>
<td>Hyperchromic</td>
</tr>
<tr>
<td>Mean corpuscular hemoglobin concentration (MCHC)</td>
<td>Average amount of Hb in one RBC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal = 27–34 pg/μL (normochromic)</td>
<td></td>
</tr>
</tbody>
</table>
11-4 The ABO blood types and Rh system are based on antigen–antibody responses
Blood Typing

• Are cell surface proteins that identify cells to immune system

• Normal cells are ignored and foreign cells attacked

• Blood types
 – Are genetically determined
 – By presence or absence of RBC surface antigens A, B, Rh (or D)
Blood Types and Cross-Reactions

Figure 11-7a
Figure 11-7b

Surface antigens + Opposing antibodies → Agglutination (clumping) and hemolysis
• The Rh Factor
 – Also called D antigen
 – Either Rh positive (Rh\(^+\)) or Rh negative (Rh\(^-\)):
 • Only **sensitized** Rh\(^-\) blood has anti-Rh antibodies
<table>
<thead>
<tr>
<th>POPULATION</th>
<th>PERCENTAGE WITH EACH BLOOD TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O</td>
</tr>
<tr>
<td>U.S. (AVERAGE)</td>
<td>46</td>
</tr>
<tr>
<td>African American</td>
<td>49</td>
</tr>
<tr>
<td>Caucasian</td>
<td>45</td>
</tr>
<tr>
<td>Chinese American</td>
<td>42</td>
</tr>
<tr>
<td>Filipino American</td>
<td>44</td>
</tr>
<tr>
<td>Hawaiian</td>
<td>46</td>
</tr>
<tr>
<td>Japanese American</td>
<td>31</td>
</tr>
<tr>
<td>Korean American</td>
<td>32</td>
</tr>
<tr>
<td>NATIVE NORTH AMERICAN</td>
<td>79</td>
</tr>
<tr>
<td>NATIVE SOUTH AMERICAN</td>
<td>100</td>
</tr>
<tr>
<td>AUSTRALIAN ABORIGINAL</td>
<td>44</td>
</tr>
</tbody>
</table>
11-5 The various types of white blood cells contribute to the body’s defenses
White Blood Cells

- Also called leukocytes
- Do not have hemoglobin
- Have nuclei and other organelles
- WBC functions
 - Defend against pathogens
 - Remove toxins and wastes
 - Attack abnormal cells
• Most WBCs in
 – Connective tissue proper
 – Lymphoid system organs

• Small numbers in blood
 – 5000 to 10,000 per microliter
• Characteristics of circulating WBCs
 – Can migrate out of bloodstream
 – Have amoeboid movement
 – Attracted to chemical stimuli (positive chemotaxis)
 – Some are phagocytic:
 • Neutrophils, eosinophils, and monocytes
White Blood Cells

- Types of WBCs
 - Neutrophils
 - Eosinophils
 - Basophils
 - Monocytes
 - Lymphocytes
Types of WBCs

Figure 11-8
Types of WBCs

Figure 11-8
Types of WBCs

- Neutrophils
 - Also called **polymorphonuclear leukocytes**
 - 50% to 70% of circulating WBCs
 - Pale cytoplasm granules with:
 - Lysosomal enzymes
 - Bactericides (hydrogen peroxide and superoxide)
Types of WBCs

• Eosinophils
 – Also called acidophils
 – 2% to 4% of circulating WBCs
 – Attack large parasites
 – Excrete toxic compounds:
 • Nitric oxide
 • Cytotoxic enzymes
 – Are sensitive to allergens
 – Control inflammation with enzymes that counteract inflammatory effects of neutrophils and mast cells
Types of WBCs

• Basophils
 – Are less than 1% of circulating WBCs
 – Are small
 – Accumulate in damaged tissue
 – Release histamine:
 • Dilates blood vessels
 – Release heparin:
 • Prevents blood clotting
Types of WBCs

- Monocytes
 - 2% to 8% of circulating WBCs
 - Are large and spherical
 - Enter peripheral tissues and become macrophages
 - Engulf large particles and pathogens
 - Secrete substances that attract immune system cells and fibrocytes to injured area
Types of WBCs

- Lymphocytes
 - 20% to 30% of circulating WBCs
 - Are larger than RBCs
 - Migrate in and out of blood
 - Mostly in connective tissues and lymphoid organs
 - Are part of the body’s specific defense system
Differential Counts

- Detects changes in WBC populations
- Infections, inflammation, and allergic reactions
WBC Formation

• All blood cells originate from hemocytoblasts
 – Which produce myeloid stem cells and lymphoid stem cells

• Myeloid Stem Cells
 – Differentiate into progenitor cells, which produce all WBCs except lymphocytes

• Lymphoid Stem Cells
 – Lymphopoiesis: the production of lymphocytes
Figure 11-5
Table 11-3: A Review of the Formed Elements of the Blood

<table>
<thead>
<tr>
<th>CELL</th>
<th>ABUNDANCE (AVERAGE PER μL)</th>
<th>FUNCTIONS</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED BLOOD CELLS</td>
<td>5.2 million (range: 4.4–6.0 million)</td>
<td>Transport oxygen from lungs to tissues, and carbon dioxide from tissues to lungs</td>
<td>Remain in bloodstream; 120-day life expectancy; amino acids and iron recycled; produced in bone marrow</td>
</tr>
<tr>
<td>CELL</td>
<td>ABUNDANCE (AVERAGE PER μL)</td>
<td>FUNCTIONS</td>
<td>REMARKS</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>WHITE BLOOD CELLS</td>
<td>7000 (range: 6000–9000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutrophils</td>
<td>4150 (range: 1800–7300)</td>
<td>Phagocytic: Engulf pathogens or debris in tissues, release cytotoxic enzymes and chemicals</td>
<td>Move into tissues after several hours; survive minutes to days, depending on tissue activity; produced in bone marrow</td>
</tr>
<tr>
<td>Eosinophils</td>
<td>165 (range: 0–700)</td>
<td>Attack antibody-labeled materials through release of cytotoxic enzymes and/or phagocytosis</td>
<td>Move into tissues after several hours; survive minutes to days, depending on tissue activity; produced in bone marrow</td>
</tr>
<tr>
<td>Basophils</td>
<td>44 (range: 0–150)</td>
<td>Enter damaged tissues and release histamine and other chemicals that promote inflammation</td>
<td>Survival time unknown; assist mast cells of tissues in producing inflammation; produced in bone marrow</td>
</tr>
<tr>
<td>CELL</td>
<td>ABUNDANCE (AVERAGE PER μL)</td>
<td>FUNCTIONS</td>
<td>REMARKS</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Monocytes</td>
<td>456 (range: 200–950)</td>
<td>Enter tissues to become macrophages; engulf pathogens or debris</td>
<td>Move into tissues after 1–2 days; survive months or longer; primarily produced in bone marrow</td>
</tr>
<tr>
<td></td>
<td>Differential count: 2–8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>2185 (range: 1500–4000)</td>
<td>Cells of lymphoid system; provide defense against specific pathogens or toxins</td>
<td>Survive months to decades; circulate from blood to tissues and back; produced in bone marrow and lymphoid tissues</td>
</tr>
<tr>
<td></td>
<td>Differential count: 20–30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CELL</td>
<td>ABUNDANCE (AVERAGE PER µL)</td>
<td>FUNCTIONS</td>
<td>REMARKS</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>PLATELETS</td>
<td>350,000 (range: 150,000–500,000)</td>
<td>Hemostasis: Clump together and stick to vessel wall (platelet phase); initiate coagulation phase</td>
<td>Remain in circulation or in vascular organs; survive 7–12 days; produced by megakaryocytes in bone marrow</td>
</tr>
</tbody>
</table>
11-6 Platelets, disc-shaped structures formed from megakaryocytes, function in the clotting process
Platelets

- Cell fragments involved in human clotting system
 - Nonmammalian vertebrates have thrombocytes (nucleated cells)
- Circulate for 9 to 12 days
- Are removed by spleen
- Two-thirds are reserved for emergencies
Platelets

- **Platelet Counts**
 - 150,000 to 500,000 per microliter
 - **Thrombocytopenia:**
 - Abnormally low platelet count
 - **Thrombocytosis:**
 - Abnormally high platelet count
11-7 Hemostasis involves vascular spasm, platelet plug formation, and blood coagulation.
Phases of Hemostasis

• Hemostasis is the cessation of bleeding

• Consists of three phases
 – Vascular phase
 – Platelet phase
 – Coagulation phase
Phases of Hemostasis

• The Vascular Phase
 – A cut triggers vascular spasm that lasts 30 minutes
 – Three steps of the vascular phase:
 • Endothelial cells contract:
 – expose basal lamina to bloodstream
 • Endothelial cells release:
 – chemical factors: ADP, tissue factor, and prostacyclin
 – local hormones: endothelins
 – stimulate smooth muscle contraction and cell division
 • Endothelial plasma membranes become “sticky”:
 – seal off blood flow
Phases of Hemostasis

• The Platelet Phase
 – Begins within 15 seconds after injury
 – Platelet adhesion (attachment):
 • To sticky endothelial surfaces
 • To basal laminae
 • To exposed collagen fibers
 – Platelet aggregation (stick together):
 • Forms platelet plug
 • Closes small breaks
Phases of Hemostasis

• The Coagulation Phase

 – Begins 30 seconds or more after the injury

 – Blood clotting (coagulation):

 • Cascade reactions:

 – chain reactions of enzymes and proenzymes

 – form three pathways

 – convert circulating fibrinogen into insoluble fibrin
The Coagulation Phase of Hemostasis

Figure 11-10
The Coagulation Phase of Hemostasis

Figure 11-9

- Trapped RBC
- Fibrin network
- Platelets
Hemostasis

• Three Coagulation Pathways
 – **Extrinsic pathway:**
 • Begins in the vessel wall
 • Outside bloodstream
 – **Intrinsic pathway:**
 • Begins with circulating proenzymes
 • Within bloodstream
 – **Common pathway:**
 • Where intrinsic and extrinsic pathways converge
• **Clot Retraction**

 – After clot has formed:

 • Platelets contract and pull torn area together

 – Takes 30 to 60 minutes
Clot Retraction and Removal

• Fibrinolysis
 – Slow process of dissolving clot:
 • Thrombin and tissue plasminogen activator (t-PA):
 – activate plasminogen
 – Plasminogen produces plasmin:
 • Digests fibrin strands