Chapter 21
Lecture Outline

See separate PowerPoint slides for all figures and tables pre-inserted into PowerPoint without notes.
Patterns of Genetic Inheritance
Points to ponder

• What is the genotype and the phenotype of an individual?
• What are the genotypes for homozygous recessive and dominant individuals, and a heterozygous individual?
• Be able to draw a Punnett square for a one-trait cross, two-trait cross, and sex-linked cross.
• What are Tay-Sachs disease, Huntington disease, sickle-cell disease, and PKU? How are each of these inherited?
• What is polygenic inheritance?
• What is a multifactorial trait?
• What is sex-linked inheritance?
• Name three X-linked recessive disorders.
• What is codominance?
• What is incomplete dominance?
• What do you think about preimplantation genetic testing?
These traits are genetically inherited

Answer these questions about your inheritance.

• Do you have a widow’s peak or a straight hairline?
• Are your earlobes attached or unattached?
• Do you have short or long fingers?
• Do you have freckles?
Genotype

Genotype – specific genes for a particular trait written with symbols

– **Alleles** are alternate forms of a specific gene at the same position (locus) on a gene (e.g., allele for unattached earlobes and attached lobes); alleles occur in pairs.

– A **dominant gene** will be expressed and will mask a recessive gene (Tt or TT).

– A **recessive allele** is only expressed when a gene has two of this type of allele.
Genotype

- A **homozygous dominant genotype** consists of two dominant alleles (TT or AA).
- A **homozygous recessive genotype** consists of two recessive alleles (tt or aa).
- A **heterozygous genotype** consists of one dominant allele and one recessive allele (Tt or Aa).
Phenotype

Phenotype – the physical or outward expression of the genotype

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE</td>
<td>unattached earlobe</td>
</tr>
<tr>
<td>Ee</td>
<td>unattached earlobe</td>
</tr>
<tr>
<td>ee</td>
<td>attached earlobe</td>
</tr>
</tbody>
</table>

What are your genotype and phenotype?
21.1 Genotype and Phenotype

Understanding genotype and phenotype

Figure 21.1 Genetic inheritance affects our characteristics.

Allele Key
- \(A \) = Normal pigmentation
- \(a \) = Lack of pigmentation (albino)
21.2 One- and Two-Trait Inheritance

What about your inheritance?

Figure 21.2 Common inherited traits in humans.
Crosses

- **One-trait cross** – considers the inheritance of one characteristic

 e.g. WW \times Ww

- **Two-trait cross** – considers the inheritance of two characteristics

 e.g. WWTT \times WwTT

- Gametes only carry one allele, so if an individual has the genotype Ww, what are the possible gametes that this individual can pass on?

 Answer: either a W or a w, but not both
Another example:

Parents

no freckles

ff

meiosis

gametes

Offspring

no freckles

ff

ff

no freckles

ff

ff

no freckles
Punnett squares

• **Punnett squares** are the use of a grid to diagram crosses between individuals by using the possible parental gametes.

• These allow one to determine the probability that an offspring will have a particular genotype and phenotype.
Figure 21.3 Expected results of a monohybrid cross.
Practicing Punnett squares

• What would a Punnett square involving a man (M) with a genotype Ff and a woman (F) with a genotype Ff look like?

F – freckles
f – no freckles

<table>
<thead>
<tr>
<th></th>
<th>M/F</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>FF</td>
<td>Ff</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>Ff</td>
<td>ff</td>
<td></td>
</tr>
</tbody>
</table>
Practicing ratios

- Genotypic ratio is the number of offspring with the same genotype.
- Phenotypic ratio is the number of offspring with the same outward appearance.
Practicing ratios

- What is the genotypic ratio?
 1: 2: 1 (1 FF: 2 Ff: 1 ff)

- What is the phenotypic ratio?
 3: 1 (3 with freckles and 1 with no freckles)
Monohybrid crosses

Monohybrid cross – an experimental cross in which parents are identically heterozygous at 1 gene pair (e.g., Aa x Aa)

Figure 21.4 Determining if a dominant phenotype is homozygous or heterozygous.
Possible gametes for 2 traits

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Cell has two pairs of homologues.

Either

MEIOSIS I

ALLELE KEY

F = Freckles
f = No freckles
S = Short fingers
s = Long fingers

MEIOSIS II

Figure 21.5 Meiosis results in genetic diversity of gametes.
Dihybrid cross (a type of two-trait cross)

- **Dihybrid cross** – an experimental cross usually involving parents who are homozygous for different alleles of two genes
 - Results in a 9:3:3:1 genotypic ratio for the offspring

Figure 21.6 Expected results of a dihybrid cross.
Punnett square for a dihybrid cross

- What would the Punnett square look like for a dihybrid cross between a male who is WWSS and a female who is wwss?

Figure 21.6 Expected results of a dihybrid cross.
21.2 One- and Two-Trait Inheritance

Figure 21.7 Two-trait cross.
21.2 One- and Two-Trait Inheritance

Phenotypic ratios of common crosses

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

<table>
<thead>
<tr>
<th>Table 21.1</th>
<th>Phenotypic Ratios of Common Crosses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotypes</td>
<td>Phenotypes</td>
</tr>
<tr>
<td>Monohybrid $Aa \times$ monohybrid Aa</td>
<td>3:1 (dominant to recessive)</td>
</tr>
<tr>
<td>Monohybrid $Aa \times$ recessive aa</td>
<td>1:1 (dominant to recessive)</td>
</tr>
<tr>
<td>Dihybrid $AaBb \times$ dihybrid $AaBb$</td>
<td>9:3:3:1 (9 both dominant: 3 dominant for one of the traits: 3 dominant for other trait: 1 both recessive)</td>
</tr>
<tr>
<td>Dihybrid $AaBb \times$ recessive $aabb$</td>
<td>1:1:1:1 (all possible combinations in equal number)</td>
</tr>
</tbody>
</table>

Table 21.1 Phenotypic ratios of common crosses
Autosomal recessive disorder

- Individuals must be homozygous recessive to have the disorder.

Key
- aa = affected
- Aa = carrier (unaffected)
- AA = unaffected
- $A?$ = unaffected (one allele unknown)

Autosomal recessive disorders
- Affected children can have unaffected parents.
- Heterozygotes (Aa) have an unaffected phenotype.
- Two affected parents will always have affected children.
- Affected individuals with homozygous unaffected mates will have unaffected children.
- Close relatives who reproduce are more likely to have affected children.
- Both males and females are affected with equal frequency.

Figure 21.8 Autosomal recessive disorder pedigree.
Autosomal dominant disorder

- Individuals that are homozygous dominant and heterozygous will have the disorder.

Figure 21.9
Autosomal dominant disorder pedigree.

Autosomal dominant disorders
- Affected children will usually have an affected parent.
- Heterozygotes (Aa) are affected.
- Two affected parents can produce an unaffected child.
- Two unaffected parents will not have affected children.
- Both males and females are affected with equal frequency.
Autosomal recessive disorders of interest

- **Tay-Sachs disease** – lack of the enzyme that breaks down fatty acid proteins in lysosomes results in accumulation

- **Cystic fibrosis** – Cl⁻ ions do not pass normally through a cell membrane, resulting in thick mucus in lungs and other places, often causing infections
Autosomal recessive disorders of interest

- **Phenylketonuria (PKU)** – lack of an enzyme needed to make a certain amino acid; affects nervous system development

- **Sickle-cell disease** – red blood cells are sickle-shaped rather than biconcave, resulting in clogged blood vessels
Figure 21.10 Neuron affected by Tay–Sachs disease.
Autosomal dominant disorders of interest

• **Marfan syndrome** – defect in the production of the elastic connective tissue protein fibrillin; results in dislocated lens, long limbs and fingers, caved-in chest, and weak wall of aorta

• **Osteogenesis imperfecta** – defect in collagen synthesis; results in weakened, brittle bones

• **Huntington disease** – huntington protein has too many glutamine amino acids, leading to the progressive degeneration of brain cells
21.3 Inheritance of Genetic Disorders

Marfan syndrome

Chest wall deformities
- Long, thin fingers, arms, legs
- Scoliosis (curvature of the spine)
- Flat feet
- Long, narrow face
- Loose joints

Heart and blood vessels
- Mitral valve prolapse
- Enlargement of aorta
- Aneurysm
- Aortic wall tear
- Aneurysm
- Aortic wall tear

Eyes
- Lens dislocation
- Severe nearsightedness

Lungs
- Collapsed lungs

Skin
- Stretch marks in skin
- Recurrent hernias
- Dural ectasia: stretching of the membrane that holds spinal fluid

Figure 21.16 Marfan syndrome.
21.3 Inheritance of Genetic Disorders

Genetic disorders

Figure 21.11 Cystic fibrosis disease.

Figure 21.12 Huntington disease.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Preimplantation genetic diagnosis

- If prospective parents carry an allele for a genetic disorder, they may seek assurance that their offspring will be free of the disorder.

- Following *in vitro* fertilization (IVF), the zygote divides.

- When the embryo has eight cells, one may be removed for genetic testing.

- Only embryos that will not have the genetic disorders of interest are placed in the uterus to continue developing.
Preimplantation genetic diagnosis

21.3 Inheritance of Genetic Disorders

Figure 21A The process of preimplantation genetic diagnosis.

- a. Testing the embryo
- b. Testing the egg

(both): © Brand X/SuperStock RF
Polygenic inheritance

- **Polygenic traits** – two or more sets of alleles govern one trait
 - Each dominant allele codes for a product, so these effects are additive.
 - This results in a continuous variation of phenotypes.
 - Environmental effects cause intervening phenotypes.
- e.g. skin color ranges from very dark to very light
- e.g. height varies among individual humans
Polygenic inheritance

- **Multifactorial trait** – a polygenic trait that is particularly influenced by the environment
 - e.g. skin color is influenced by sun exposure
 - e.g. height can be affected by nutrition
Polygenic inheritance

Figure 21.13 Height is a polygenic trait in humans.

Figure 21.14 Polygenic inheritance and skin color.
Demonstrating environmental influences on phenotype

- Himalayan rabbit’s coat color is influenced by temperature.
- There is an allele responsible for melanin production that appears to be active only at lower temperatures.
- The extremities have a lower temperature and thus the ears, nose, paws, and tail are dark in color.

Figure 21.15 Himalayan rabbit with temperature-susceptible coat color.
Incomplete dominance

- Occurs when the heterozygote phenotype is intermediate between phenotypes of the two homozygotes

- Example:

 \[(\text{curly hair}) \text{CC} \times \text{SS (straight hair)} \rightarrow \text{CS (wavy hair)}\]
Familial hypercholesterolemia

- Two mutated alleles lack LDL-cholesterol receptors.
- One mutated allele has half the normal number of receptors.
- Two normal alleles have the usual number of receptors.
- When receptors are completely absent, excessive cholesterol is deposited in various places in the body, including under the skin.
Familial hypercholesterolemia

Figure 21.17 The inheritance of familial hypercholesterolemia.
Codominance

• Occurs when the alleles are equally expressed in a heterozygote

• Example:

\[(\text{Type A blood}) \quad AA \quad \times \quad BB \quad (\text{Type B blood})\]

\[\quad AB \quad (\text{Type AB blood that has characteristics of both blood types})\]
Multiple allele inheritance

- The gene exists in several allelic forms.

- A person only has two of the possible alleles.

- A good example is the ABO blood system.

- A and B are codominant alleles.

- The O allele is recessive to both A and B; therefore, to have this blood type, you must have two recessive alleles.
Multiple allele inheritance

What type of blood would each of the following individuals have in a cross between Ao and Bo?

<table>
<thead>
<tr>
<th>Possible genotypes:</th>
<th>Phenotypes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>Type AB blood</td>
</tr>
<tr>
<td>Bo</td>
<td>Type B blood</td>
</tr>
<tr>
<td>Ao</td>
<td>Type A blood</td>
</tr>
<tr>
<td>oo</td>
<td>Type O blood</td>
</tr>
</tbody>
</table>
21.4 Beyond Simple Inheritance Patterns

Blood type inheritance

Parents

\[\text{Blood type } A \]
\[\text{Blood type } B \]
\[\text{Blood type AB} \]
\[\text{Blood type O} \]

Key

- Blood type A
- Blood type B
- Blood type AB
- Blood type O

Phenotypic Ratio

1:1:1:1

Offspring

\[\text{Blood type A} \]
\[\text{Blood type B} \]
\[\text{Blood type AB} \]
\[\text{Blood type O} \]

Figure 21.18 The inheritance of ABO blood types.
Sex-linked inheritance

- Traits are controlled by genes on the sex chromosomes.
 - **X-linked** inheritance – the allele is carried on the X chromosome
 - **Y-linked** inheritance – the allele is carried on the Y chromosome
 - Most **sex-linked** traits are X-linked.
21.5 Sex-Linked Inheritance

X-linked inheritance: Color blindness

Cross:
$X^B X^b \times X^B Y$

Possible offspring:
$X^B X^B$ normal vision female
$X^B X^b$ normal vision female
$X^B Y$ normal vision male
$X^b Y$ color-blind vision male

Figure 21.19 Results of an X-linked cross.
21.5 Sex-Linked Inheritance

X-linked disorders

• More males than females are affected.
• An affected son can have parents who have the normal phenotype.
• For a female to have the characteristic, her father must also have it. Her mother must have it or be a carrier.
• The characteristic often skips a generation from the grandfather to the grandson.
• If a woman has the characteristic, all of her sons will have it.

Key
- $X^B X^B$ = Unaffected female
- $X^B X^b$ = Carrier female
- $X^b X^B$ = Color-blind female
- $X^B Y$ = Unaffected male
- $X^b Y$ = Color-blind male

Figure 21.20 X-linked recessive disorder pedigree.
21.5 Sex-Linked Inheritance

X-linked disorders

• These are more often found in males than females because recessive alleles are always expressed.

• Most X-linked disorders are recessive.
 – **Color blindness** is most often characterized by red-green color blindness.
 – **Duchenne muscular dystrophy** is characterized by wasting of muscles and death by age 20.
 – **Fragile X syndrome** is the most common cause of inherited mental impairment.
 – **Hemophilia** is characterized by the absence of particular clotting factors; blood clots very slowly or not at all.
21.5 Sex-Linked Inheritance

Duchenne muscular dystrophy

Figure 21.21 Muscular dystrophy.

(left, right): Courtesy Dr. Rabi Tawil, Director, Neuromuscular Pathology Laboratory, University of Rochester Medical Center; (center): Courtesy Muscular Dystrophy Association
21.5 Sex-Linked Inheritance

X-linked disorders: Hemophilia

Figure 21B The royal families’ X-linked pedigree.