Chapter 07
Lecture Outline

See separate PowerPoint slides for all figures and tables pre-inserted into PowerPoint without notes.
Introduction

• In this chapter we will cover:
 – Bone tissue composition
 – How bone functions, develops, and grows
 – How bone metabolism is regulated and some of its disorders
Introduction

- Bones and teeth are the most durable remains of a once-living body
- Living skeleton is made of dynamic tissues, full of cells, permeated with nerves and blood vessels
- Continually remolds itself and interacts with other organ systems of the body
- Osteology is the study of bone
Tissues and Organs of the Skeletal System

• Expected Learning Outcomes
 – Name the tissues and organs that compose the skeletal system.
 – State several functions of the skeletal system.
 – Distinguish between bones as a tissue and as an organ.
 – Describe the four types of bones classified by shape.
 – Describe the general features of a long bone and a flat bone.
Tissues and Organs of the Skeletal System

• **Skeletal system**—composed of bones, cartilages, and ligaments
 – **Cartilage**—forerunner of most bones
 • Covers many joint surfaces of mature bone
 – **Ligaments**—hold bones together at joints
 – **Tendons**—attach muscle to bone
Functions of the Skeleton

- **Support**—limb bones and vertebrae support body; jaw bones support teeth; some bones support viscera.
- **Protection**—of brain, spinal cord, heart, lungs, and more.
- **Movement**—limb movements, breathing, and other movements depend on bone.
- **Electrolyte balance**—calcium and phosphate levels.
- **Acid–base balance**—buffers blood against large pH changes by altering phosphate and carbonate salt levels.
- **Blood formation**—red bone marrow is the chief producer of blood cells.
Bones and Osseous Tissue

• **Bone (osseous tissue)**—connective tissue with the matrix hardened by calcium phosphate and other minerals

• **Mineralization or calcification**—the hardening process of bone

• **Individual bones (organs) consist of bone tissue, bone marrow, cartilage, adipose tissue, nervous tissue, and fibrous connective tissue**
General Features of Bones

• **Flat bones**
 – Thin, curved plates
 – Protect soft organs

• **Long bones**
 – Longer than wide
 – Rigid levers acted upon by muscles; crucial for movement

• **Short bones**
 – Approximately equal in length and width
 – Glide across one another in multiple directions

• **Irregular bones**
 – Elaborate shapes that do not fit into other categories
General Features of Bones

- **Compact bone**—dense outer shell of bone
- **Spongy (cancellous) bone**—loosely organized bone tissue
 - Found in center of ends and center of shafts of long bones and in middle of nearly all others
 - Covered by more durable compact bone
- **Skeleton three-fourths compact and one-fourth spongy bone by weight**
- **Long bone features**
 - **Diaphysis**—shaft that provides leverage
 - **Medullary cavity (marrow cavity)**—space in the diaphysis of a long bone that contains bone marrow
 - **Epiphyses**—enlarged ends of a long bone
 - Strengthen joint and anchor ligaments and tendons
General Features of Bones

• **Articular cartilage**—layer of hyaline cartilage that covers joint surface; allows joint to move more freely

• **Nutrient foramina**—minute holes in bone surface that allows blood vessels to penetrate

• **Periosteum**—external sheath covering most of bone
 – **Outer fibrous layer** of collagen
 • Some fibers continuous with tendons
 • **Perforating fibers**—penetrate into bone matrix
 – **Inner osteogenic layer** of bone-forming cells
 • Important to bone growth and healing of fractures

• **Endosteum**—thin layer of reticular connective tissue lining marrow cavity
 – Has cells that dissolve osseous tissue and others that deposit it
General Features of Bones

- **Epiphyseal plate (growth plate)**—area of **hyaline cartilage** that separates epiphyses and diaphyses of children’s bones
 - Enables growth in length
 - **Epiphyseal line**—in adults, a bony scar that marks where growth plate used to be
General Features of Bones

- Long bone
- Epiphyses and diaphysis
- Compact and spongy bone
- Marrow cavity
- Articular cartilage
- Periosteum

Figure 7.1
General Features of Bones

- **Flat bone**
- **Sandwich-like construction**
- **Two layers of compact bone enclosing a middle layer of spongy bone**
 - Both surfaces covered with periosteum
- **Diploe**—spongy middle layer
 - Absorbs shock
 - Marrow spaces lined with endosteum

Figure 7.2
 Histology of Osseous Tissue

• **Expected Learning Outcomes**
 – List and describe the cells, fibers, and ground substance of bone tissue.
 – State the importance of each constituent of bone tissue.
 – Compare the histology of the two types of bone tissue.
 – Distinguish between the two types of bone marrow.
Bone Cells

- **Bone** is connective tissue that consists of cells, fibers, and ground substance

- **Four principal types** of bone cells
 - Osteogenic cells; osteoblasts; osteocytes; osteoclasts
Bone Cells

- **Osteogenic cells**—stem cells found in endosteum and inner layer of periosteum
 - Arise from embryonic mesenchymal cells
 - Multiply continuously and give rise to most other bone cell types

- **Osteoblasts**—bone-forming cells
 - Form single layer of cells under endosteum and periosteum
 - Nonmitotic
 - Synthesize soft organic matter of matrix which then hardens by mineral deposition
 - Stress stimulates osteogenic cells to multiply rapidly and increase the number of osteoblasts which reinforce bone
 - Secrete hormone **osteocalcin**
 - Stimulates insulin secretion of pancreas
 - Increases insulin sensitivity in adipocytes which limits the growth of adipose tissue
Bone Cells

- **Osteocytes**—former osteoblasts that have become trapped in the matrix they deposited
 - **Lacunae**—tiny cavities where osteocytes reside
 - **Canaliculi**—little channels that connect lacunae
 - Cytoplasmic processes of osteocytes reach into canaliculi and contact processes of neighboring cells
 - Gap junctions allow for passage of nutrients, wastes, signals
 - Some osteocytes reabsorb bone matrix while others deposit it
 - Act as strain sensors—when stressed, produce biochemical signals that regulate bone remodeling (shape and density changes that are adaptive)
• **Osteoclasts**—bone-dissolving cells found on bone surface
 – Osteoclasts develop from same bone marrow stem cells that give rise to blood cells (different origin from other bone cells)
 – Very large cells formed from fusion of several stem cells
 • Have multiple nuclei in each cell
 – **Ruffled border** (large surface area) faces bone
 – Cells often reside in **resorption bays** (pits in bone surface)
 – Dissolving bone is part of bone remodeling
The Matrix

- **Matrix of osseous tissue** is, by dry weight, about one-third organic and two-thirds inorganic matter.

- **Organic matter**—synthesized by osteoblasts
 - Collagen, carbohydrate–protein complexes, such as glycosaminoglycans, proteoglycans, and glycoproteins.

- **Inorganic matter**
 - 85% hydroxyapatite (crystallized calcium phosphate salt)
 - 10% calcium carbonate
 - Other minerals (fluoride, sodium, potassium, magnesium)
The Matrix

• Bone is a **composite material**—a combination of a ceramic and a polymer
 – Hydroxyapatite and other minerals are the ceramic and collagen (protein) is the polymer
 – Ceramic portion allows the bone to support body weight without sagging
 • Rickets is a disease caused by mineral deficiency and resulting in soft, deformed bones
 – Polymer (protein) gives some flexibility
 • Osteogenesis imperfecta (brittle bone disease) results from a defect in collagen deposition
Histology of Osseous Tissue

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Figure 7.4a,c,d

(a) Pelvic bone
(b) Head of femur
(c) Spongy bone
(d) Compact bone

(d) Lacunae
Canaliculi
Central canal
Lamella

20 µm

a: ©D.W. Fawcett/Visuals Unlimited; c: ©Science VU/Visuals Unlimited; d: ©Donald Fawcett/Visuals Unlimited
Compact bone

- Histology of compact bone reveals osteons (haversian systems)
 - Concentric lamellae surround a central (haversian) canal running longitudinally
 - Perforating (Volkmann) canals—transverse or diagonal passages
 - Circumferential lamellae fill outer region of dense bone
 - Interstitial lamellae fill irregular regions between osteons

Figure 7.4b,c,d
Spongy Bone

• **Spongy bone consists of:**
 – Lattice of bone covered with endosteum
 • Slivers of bone called **spicules**
 • Thin plates of bone called **trabeculae**
 – Spaces filled with **red bone marrow**

• **Few osteons and no central canals**
 – All osteocytes close to bone marrow

• **Provides strength with minimal weight**
 – Trabeculae develop along bone’s **lines of stress**
Spongy Bone Structure in Relation to Mechanical Stress

Figure 7.5

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
Bone Marrow

• **Bone marrow**—soft tissue occupying marrow cavities of long bones and small spaces of spongy bone

• **Red marrow (myeloid tissue)**
 – Contains *hemopoietic tissue*—produces blood cells
 – In nearly every bone in a child
 – In adults, found in skull, vertebrae, ribs, sternum, part of pelvic girdle, and proximal heads of humerus and femur

• **Yellow marrow** found in adults
 – Fatty marrow that does not produce blood
 – Can transform back to red marrow in the event of chronic anemia

Figure 7.6
Bone Development

• **Expected Learning Outcomes**
 – Describe two mechanisms of bone formation.
 – Explain how mature bone continues to grow and remodel itself.
Bone Development

- Ossification or osteogenesis—the formation of bone

- In the human fetus and infant, bone develops by two methods
 - Intramembranous ossification
 - Endochondral ossification
Intramembranous Ossification

- Produces flat bones of skull and clavicle in fetus
- Thickens long bones throughout life
Intramembranous Ossification

- Note the periosteum and osteoblasts

Figure 7.8
Endochondral Ossification

1. Early cartilage model
 - Perichondrium
 - Hyaline cartilage

2. Formation of primary ossification center, bony collar, and periosteum
 - Enlarging chondrocytes
 - Bony collar
 - Primary ossification center
 - Periosteum

3. Vascular invasion, formation of primary marrow cavity, and appearance of secondary ossification center
 - Secondary ossification center
 - Blood vessel
 - Primary marrow cavity

4. Bone at birth, with enlarged primary marrow cavity and appearance of secondary marrow cavity in one epiphysis
 - Secondary ossification center
 - Epiphysis
 - Metaphysis
 - Diaphysis
 - Secondary marrow cavity

5. Bone of child, with epiphyseal plate at distal end
 - Epiphyseal plate
 - Nutrient foramen
 - Marrow cavity
 - Compact bone
 - Metaphysis
 - Cartilage

6. Adult bone with a single marrow cavity and closed epiphyseal plate
 - Articular cartilage
 - Spongy bone
 - Epiphyseal line
 - Periosteum
 - Marrow cavity

Figure 7.9
Endochondral Ossification

- During infancy and childhood, the epiphyses fill with spongy bone.
- Cartilage limited to the articular cartilage covering each joint surface, and to the epiphyseal plate:
 - A thin wall of cartilage separating the primary and secondary marrow cavities.
 - Epiphyseal plate persists through childhood and adolescence.
 - Serves as a growth zone for bone elongation.
Endochondral Ossification

• By late teens to early 20s, all remaining cartilage in the epiphyseal plate is generally consumed
 – Gap between epiphyses and diaphysis closes
 – Primary and secondary marrow cavities unite into a single cavity
 – Bone can no longer grow in length
The Fetal Skeleton at 12 Weeks

Figure 7.10

Cranial bones
Mandible
Vertebrae
Scapula
Ribs
Pelvis
Humerus
Radius
Ulna
Femur

©Biophoto Associates/Science Source
Bone Growth and Remodeling

- **Ossification** continues throughout life with the growth and remodeling of bones

- Bones grow in two directions
 - Length
 - Width
X-Ray of Child’s Hand
Epiphyseal Plates

Figure 7.11

Diaphysis
Epiphysis
Epiphyseal plate
Metacarpal bone
Epiphyseal plates

Courtesy of Utah Valley Regional Medical Center, Department of Radiology
Bone Elongation

- **Epiphyseal plate**—cartilage transitions to bone
 - Functions as *growth zone* where bone elongates
 - Has typical hyaline cartilage in the middle with transition zones on each side where cartilage is replaced by bone
 - **Metaphysis** is zone of transition facing the marrow cavity
- **This is interstitial growth**—growth from within
 - Bone elongation is a result of cartilage growth within the epiphyseal plate
 - Epiphyses close when cartilage is gone—**epiphyseal line** of spongy bone marks site of former epiphyseal plate
 - Lengthwise growth is finished
 - Occurs at different ages in different bones
Zones of the Metaphysis

1. **Zone of reserve cartilage**
 Typical histology of resting hyaline cartilage

2. **Zone of cell proliferation**
 Chondrocytes multiplying and lining up in rows of small flattened lacunae

3. **Zone of cell hypertrophy**
 Cessation of mitosis; enlargement of chondrocytes and thinning of lacuna walls

4. **Zone of calcification**
 Temporary calcification of cartilage matrix between columns of lacunae

5. **Zone of bone deposition**
 Breakdown of lacuna walls, leaving open channels; death of chondrocytes; bone deposition by osteoblasts, forming trabeculae of spongy bone

Figure 7.12

© Victor Eroschenko
Dwarfism

• **Achondroplastic dwarfism**
 – Long bones stop growing in childhood
 • Normal torso, short limbs
 – Failure of cartilage growth in metaphysis
 – Spontaneous mutation produces mutant dominant allele

• **Pituitary dwarfism**
 – Lack of growth hormone
 – Normal proportions with short stature

Figure 7.13
Bone Widening and Thickening

- **Appositional growth**—occurs at bone surface
 - Continual growth in diameter and thickness
 - Intramembranous ossification
 - Osteoblasts of inner periosteum deposit osteoid tissue
 - Become trapped as tissue calcifies
 - Lay down matrix in layers parallel to surface
 - Forms *circumferential lamellae*
 - Osteoclasts of endosteum enlarge marrow cavity
Bone Remodeling

• **Bone remodeling** (absorption and deposition) occurs throughout life—10% of skeleton per year
 – Repairs microfractures, releases minerals into blood, reshapes bones in response to use and disuse
 – **Wolff’s law of bone**: architecture of bone determined by mechanical stresses placed on it
 • Remodeling is a collaborative and precise action of osteoblasts and osteoclasts
 • Bony processes grow larger in response to mechanical stress
Physiology of Osseous Tissue

• **Expected Learning Outcome**
 – Describe the processes by which minerals are added to and removed from bone tissue.
 – Describe the role of the bones in regulating blood calcium and phosphate levels.
 – Name several hormones that regulate bone physiology and describe their effects.
Physiology of Osseous Tissue

• A mature bone remains a metabolically active organ
 – Involved in its own maintenance of growth and remodeling
 – Exerts a profound influence over the rest of the body by exchanging minerals with tissue fluid
 • Disturbance of calcium homeostasis in skeleton disrupts function of other organ systems
 – Especially nervous and muscular
Mineral Deposition and Resorption

- Mineral deposition (mineralization)—process in which calcium, phosphate, and other ions are taken from blood and deposited in bone
 - Osteoblasts produce collagen fibers that spiral the length of the osteon
 - Fibers become encrusted with minerals
 - Hydroxyapatite crystals form at solubility product—critical level of calcium times phosphate concentration
 - First few crystals act as seed crystals that attract more calcium and phosphate from solution
 - Abnormal calcification (ectopic ossification)—formation of a calculus (calcified mass) in an otherwise soft organ such as a lung, brain, eye, muscle, tendon, or artery (arteriosclerosis)
Mineral Deposition and Resorption

- **Mineral resorption**—process of dissolving bone and releasing minerals into blood
 - Performed by **osteoclasts** at **ruffled border**
 - **Hydrogen pumps** in membranes secrete hydrogen into space between osteoclast and bone surface
 - **Chloride ions** follow by electrical attraction
 - **Hydrochloric acid** (pH 4) dissolves bone minerals
 - **Acid phosphatase** enzyme digests collagen

- **Orthodontic appliances (braces) reposition teeth through resorption and deposit**
 - Tooth moves because osteoclasts dissolve bone ahead of tooth; osteoblasts deposit bone behind the tooth
Calcium Homeostasis

• Calcium and phosphate are used for much more than bone structure

• Phosphate is a component of DNA, RNA, ATP, phospholipids, and pH buffers

• Calcium needed in neuron communication, muscle contraction, blood clotting, and exocytosis

• Minerals are deposited in the skeleton and withdrawn when they are needed for other purposes
Calcium Homeostasis

• Total of about 1,100 g of calcium in adult body with 99% of it in bones
 – Most exists as part of hydroxyapatite, but a little is in a form that is easily exchanged with the blood
 – About 18% of skeletal calcium is exchanged with blood each year

• Normal calcium concentration in blood plasma is 9.2 to 10.4 mg/dL
 – 45% as Ca$^{2+}$ that can diffuse across capillary walls and affect other tissues
 – Rest in reserve, bound to plasma proteins
Calcium Homeostasis

• **Hypocalcemia**—deficient calcium in blood
 – Changes membrane potentials and causes overly excitable nervous system and tetany (muscle spasms)
 • **Laryngospasm** can cause suffocation
 – Caused by vitamin D deficiency, diarrhea, thyroid tumors, underactive parathyroid glands
 – Pregnancy and lactation increase risk of hypocalcemia

• **Hypercalcemia**—excessive calcium levels
 – Makes ion channels less responsive and thus nerve and muscle are less excitable
 • Can cause emotional disturbance, muscle weakness, sluggish reflexes, cardiac arrest
 – Hypercalcemia rarely occurs
Calcium Homeostasis

• Calcium homeostasis depends on a balance between dietary intake, urinary and fecal losses, and exchanges between osseous tissue

• Calcium homeostasis is regulated by three hormones:
 – Calcitriol, calcitonin, and parathyroid hormone
Calcitriol

- **Calcitriol**—most active form of vitamin D
- **Produced by actions of skin, liver, and kidneys**
 - Epidermal keratinocytes use UV radiation to convert 7-dehydrocholesterol to **previtamin D$_3$**; warm sun on skin converts this to **vitamin D$_3$**
 - Liver adds hydroxyl group converting that to **calcidiol**
 - Kidney adds hydroxyl group converting that to **calcitriol**
Calcitriol

• Calcitriol is a hormone that raises blood calcium level
 – Mainly, it increases calcium absorption by small intestine
 – It also increases calcium resorption from the skeleton
 • Stimulates osteoblasts to release RANKL, a chemical that stimulates production of more osteoclasts
 – It weakly promotes kidney reabsorption of calcium ions, so less lost in urine
Calcitriol Synthesis and Action

Figure 7.14
Calcitriol

- Calcitriol is also necessary for bone deposition—helping provide adequate calcium and phosphate
- Inadequate calcitriol results in abnormal softness of bones in children (rickets) and in adults (osteomalacia)
Calcium Homeostasis

Calcitriol, calcitonin, and PTH maintain normal blood calcium concentration

Figure 7.15
Calcitonin

• **Calcitonin**—secreted by C cells (clear cells) of thyroid gland when blood calcium levels rise too high

• **Lowers blood calcium concentration in two ways:**
 – Inhibits osteoclasts thereby reducing bone resorption
 – Stimulates osteoblasts to deposit calcium into bone

• **Important in children, weak effect in adults**
 – Osteoclasts more active in children due to faster remodeling

• **May inhibit bone loss in pregnant and lactating women**
Parathyroid Hormone

- Parathyroid hormone (PTH)—secreted by parathyroid glands on posterior surface of thyroid
- PTH released when calcium levels low in blood
- PTH raises calcium blood level by four mechanisms
 - Stimulates osteoblasts to secrete RANKL, thereby increasing osteoclast population and bone resorption
 - Promotes calcium reabsorption by kidneys, so less lost in urine
 - Promotes the final step of calcitriol synthesis in the kidneys, enhancing calcium-raising effect of calcitriol
 - Inhibits collagen synthesis by osteoblasts, inhibiting bone deposition
Calcium Homeostasis

(a) Correction for hypercalcemia

Figure 7.16a
Calcium Homeostasis

(b) Correction for hypocalcemia

Figure 7.16b
Phosphate Homeostasis

- Average adult has 500 to 800 g phosphorus with 85% to 90% of it in the bones
- Normal plasma concentration is 3.5 to 4.0 mg/dL
- Occurs in two main forms
 - HPO_4^{2-} and H_2PO_4^- (monohydrogen and dihydrogen phosphate ions)
- Phosphate levels are not regulated as tightly as calcium levels
- Calcitriol raises phosphate levels by promoting its absorption by small intestine
- PTH lowers blood phosphate levels by promoting its urinary excretion
Other Factors Affecting Bone

• At least 20 or more hormones, vitamins, and growth factors affect osseous tissue

• Bone growth especially rapid in puberty and adolescence
 – Surges of growth hormone, estrogen, and testosterone occur and promote ossification
 – These hormones stimulate multiplication of osteogenic cells, matrix deposition by osteoblasts, and chondrocyte multiplication and hypertrophy in metaphyses
Other Factors Affecting Bone

(Continued)

– Girls grow faster than boys and reach full height earlier
 • Estrogen has stronger effect than testosterone on bone growth
– Males grow for a longer time and also taller

• **Anabolic steroids** cause growth to stop
 – Epiphyseal plate “closes” prematurely
 – Results in abnormally short adult stature
Bone Disorders

• Expected Learning Outcomes
 – Name and describe several bone diseases.
 – Name and describe the types of fractures.
 – Explain how a fracture is repaired.
 – Discuss some clinical treatments for fractures and other skeletal disorders.
Bone Disorders

• **Orthopedics**—branch of medicine dealing with prevention and correction of injuries and disorders of bones, joints, and muscles
 – Name implies its origin as field treating skeletal deformities in children

• **Includes the design of artificial joints and limbs and the treatment of athletic injuries**
Fractures and Their Repair

• Stress fracture—break caused by abnormal trauma to a bone (example: in a fall)

• Pathological fracture—break in a bone weakened by disease (such as bone cancer or osteoporosis)
 – Usually caused by a stress that would not break a healthy bone

• Fractures classified by structural characteristics
 – Direction of fracture line
 – Break in the skin
 – Multiple pieces
 • Example: comminuted—three or more pieces
Types of Bone Fractures

Figure 7.17

(a) Nondisplaced
(b) Displaced
(c) Comminuted
(d) Greenstick

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
Healing of Fractures

Figure 7.18

1. **Hematoma formation**
The hematoma is converted to granulation tissue by invasion of cells and blood capillaries.

2. **Soft callus formation**
Deposition of collagen and fibrocartilage converts granulation tissue to a soft callus.

3. **Hard callus formation**
Osteoblasts deposit a temporary bony collar around the fracture to unite the broken pieces while ossification occurs.

4. **Bone remodeling**
Small bone fragments are removed by osteoclasts, while osteoblasts deposit spongy bone and then convert it to compact bone.

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
The Treatment of Fractures

• **Closed reduction**—procedure in which bone fragments are manipulated into their normal positions without surgery

• **Open reduction**—involves surgical exposure of the bone and the use of plates, screws, or pins to realign the fragments

• **Cast**—normally used to stabilize and immobilize healing bone
The Treatment of Fractures

• Fractures of the femur in children often treated with **traction**
 – Aligns bone fragments by overriding force of the strong thigh muscles

• Hip fractures in older adults are usually pinned and early walking is encouraged
 – Fractures taking more than 2 months to heal may be treated with electrical stimulation which suppresses effects of parathyroid hormone
Open Reduction of an Ankle Fracture

Figure 7.19
Other Bone Disorders

• **Osteoporosis**—the most common bone disease
 – Severe loss of bone density

• **Bones lose mass and become brittle due to loss of organic matrix and minerals**
 – Affects spongy bone the most since it is the most metabolically active
 – Subject to pathological fractures of hip, wrist, and vertebral column
 – **Kyphosis (widow’s hump)**—deformity of spine due to vertebral bone loss
 – Complications of loss of mobility are pneumonia and thrombosis
Osteoporosis

- Estrogen maintains bone density in both sexes; inhibits resorption by osteoclasts

- Postmenopausal white women at greatest risk
 - Ovaries cease to secrete estrogen
 - White women begin to lose bone mass as early as age 35
 - By age 70, average loss is 30% of bone mass
 - Risk factors: race, age, gender, smoking, diabetes mellitus, diets poor which are poor in: calcium, protein, vitamins C and D

- Osteoporosis also seen in young female athletes with low body fat causing them to stop ovulating and decrease estrogen secretion
Osteoporosis (Continued)

• Treatments
 – Estrogen replacement therapy (ERT) slows bone resorption, but increases risk of breast cancer, stroke, and heart disease
 – Drugs Fosamax, Actonel destroy osteoclasts
 – PTH slows bone loss if given as daily injection
 • Forteo (PTH derivative) increases density by 10% in 1 year
 – May promote bone cancer so use is limited to 2 years
 – Best treatment is prevention: exercise and a good bone-building diet between ages 25 and 40
Figure 7.20 a,b

(a) ©Michael Klein/Peter Arnold, Inc./Getty Images; b: © Dr. P. Marzzi/Science Source