Introduction to the Cardiovascular System

- A circulating transport system
 - A pump (the heart)
 - A conducting system (blood vessels)
- A fluid medium (blood)
 - Is specialized fluid of connective tissue
 - Contains cells suspended in a fluid matrix
Introduction to the Cardiovascular System

- To transport materials to and from cells
 - Oxygen and carbon dioxide
 - Nutrients
 - Hormones
 - Immune system components
 - Waste products
Functions of Blood

- Transport of dissolved substances
- Regulation of pH and ions
- Restriction of fluid losses at injury sites
- Defense against toxins and pathogens
- Stabilization of body temperature
Physical Characteristics of Blood

- **Whole Blood**
 - **Plasma**
 - Fluid consisting of:
 - water
 - dissolved plasma proteins
 - other solutes
 - **Formed elements**
 - All cells and solids
Physical Characteristics of Blood

Figure 19–1 The Composition of Whole Blood
Physical Characteristics of Blood

Figure 19–1b The Composition of a Typical Sample of Plasma

Plasma Proteins
- **Albumins (60%)**: Major contributors to osmotic pressure of plasma; transport lipids, steroid hormones.
- **Globulins (35%)**: Transport ions, hormones, lipids; immune function.
- **Fibrinogen (4%)**: Essential component of clotting system; can be converted to insoluble fibrin.
- **Regulatory proteins (<1%)**: Enzymes, proenzymes, hormones.

Plasma Composition
- **Plasma proteins**: 7%
- **Other solutes**: 1%
- **Water**: 92%
 - Transports organic and inorganic molecules, formed elements, and heat.

Other Solute Compartments
- **Electrolytes**: Normal extracellular fluid ion composition essential for vital cellular activities. Ions contribute to osmotic pressure of body fluids.
 - Major plasma electrolytes are Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, HCO₃⁻, HPO₄⁻, SO₄²⁻.
- **Organic nutrients**: Used for ATP production, growth, and maintenance of cells; include lipids (fatty acids, cholesterol, glycerides), carbohydrates (primarily glucose), and amino acids.
- **Organic wastes**: Carried to sites of breakdown or excretion; include urea, uric acid, creatinine, bilirubin, ammonium ions.
Physical Characteristics of Blood

Figure 19–1c The Composition of Formed Elements of Blood
Physical Characteristics of Blood

- Three Types of Formed Elements
 - Red blood cells (RBCs) or erythrocytes
 - Transport oxygen
 - White blood cells (WBCs) or leukocytes
 - Part of the immune system
 - Platelets
 - Cell fragments involved in clotting
Physical Characteristics of Blood

- Hemopoiesis
 - Process of producing formed elements
 - By myeloid and lymphoid stem cells

- Fractionation
 - Process of separating whole blood for clinical analysis
 - Into plasma and formed elements
Physical Characteristics of Blood

Three General Characteristics of Blood

- 38°C (100.4°F) is normal temperature
- High viscosity
- Slightly alkaline pH (7.35–7.45)
Physical Characteristics of Blood

- Blood volume (liters) = 7% of body weight (kilograms)
 - Adult male: 5 to 6 liters
 - Adult female: 4 to 5 liters
Plasma

- Makes up 50–60% of blood volume
- More than 90% of plasma is water
- Extracellular fluids
 - Interstitial fluid (IF) and plasma
 - Materials plasma and IF exchange across capillary walls
 - Water
 - Ions
 - Small solutes
Plasma

- Differences between Plasma and IF
 - Levels of O_2 and CO_2
 - Concentrations and types of dissolved proteins
 - Plasma proteins do not pass through capillary walls
Plasma Proteins

- **Albumins (60%)**
 - Transport substances such as fatty acids, thyroid hormones, and steroid hormones

- **Globulins (35%)**
 - Antibodies, also called immunoglobulins
 - Transport globulins (small molecules): hormone-binding proteins, metalloproteins, apolipoproteins (*lipoproteins*), and steroid-binding proteins

- **Fibrinogen (4%)**
 - Molecules that form clots and produce long, insoluble strands of fibrin
Plasma

- Serum
 - Liquid part of a blood sample
 - In which dissolved fibrinogen has converted to solid fibrin

- Other Plasma Proteins
 - 1% of plasma
 - Changing quantities of specialized plasma proteins
 - Enzymes, hormones, and prohormones
Plasma

- Origins of Plasma Proteins
 - 90% + made in liver
 - Antibodies made by plasma cells
 - Peptide hormones made by endocrine organs
Red Blood Cells

- Red blood cells (RBCs) make up 99.9% of blood’s formed elements

- Hemoglobin
 - The red pigment that gives whole blood its color
 - Binds and transports oxygen and carbon dioxide
Red Blood Cells

- **Abundance of RBCs**
 - **Red blood cell count**: the number of RBCs in 1 microliter of whole blood
 - Male: 4.5–6.3 million
 - Female: 4.2–5.5 million
 - **Hematocrit** (packed cell volume, PCV): percentage of RBCs in centrifuged whole blood
 - Male: 40–54
 - Female: 37–47
Red Blood Cells

- Structure of RBCs
 - Small and highly specialized discs
 - Thin in middle and thicker at edge

- Importance of RBC Shape and Size
 - High surface-to-volume ratio
 - Quickly absorbs and releases oxygen
 - Discs form stacks called *rouleaux*
 - Smooth the flow through narrow blood vessels
 - Discs bend and flex entering small capillaries:
 - 7.8 µm RBC passes through 4 µm capillary
Red Blood Cells

Figure 19–2a–c The Anatomy of Red Blood Cells
Figure 19–2d The Anatomy of Red Blood Cells

(d) Sectional view of capillaries
Red Blood Cells

- Lifespan of RBCs
 - Lack nuclei, mitochondria, and ribosomes
 - Means no repair and *anaerobic* metabolism
 - Live about 120 days
Red Blood Cells

- Hemoglobin (Hb)
 - Protein molecule, that transports respiratory gases
 - Normal hemoglobin (adult male)
 - 14–18 g/dL whole blood
 - Normal hemoglobin (adult female)
 - 12–16 g/dL, whole blood
Hemoglobin Structure

- Complex quaternary structure
- Four globular protein subunits:
 - Each with one molecule of heme
 - Each heme contains one iron ion
- Iron ions
 - Associate easily with oxygen (oxyhemoglobin)
 - OR
 - Dissociate easily from oxygen (deoxyhemoglobin)
Figure 19–3 The Structure of Hemoglobin
Red Blood Cells

- Fetal Hemoglobin
 - Strong form of hemoglobin found in embryos
 - Takes oxygen from mother’s hemoglobin
Red Blood Cells

- Hemoglobin Function
 - Carries oxygen
 - With low oxygen (peripheral capillaries)
 - Hemoglobin releases oxygen
 - Binds carbon dioxide and carries it to lungs
 - Forms carbaminohemoglobin
Red Blood Cells

Figure 19–4 "Sickling" in Red Blood Cells
Red Blood Cells

- **RBC Formation and Turnover**
 - 1% of circulating RBCs wear out per day
 - About 3 million RBCs per second
 - Macrophages of liver, spleen, and bone marrow
 - Monitor RBCs
 - Engulf RBCs before membranes rupture (*hemolyze*)
Red Blood Cells

- Hemoglobin Conversion and Recycling
 - Phagocytes break hemoglobin into components
 - Globular proteins to amino acids
 - Heme to **biliverdin**
 - Iron
 - Hemoglobinuria
 - Hemoglobin breakdown products in urine due to excess hemolysis in bloodstream
 - Hematuria
 - Whole red blood cells in urine due to kidney or tissue damage
Red Blood Cells

- Iron Recycling
 - Iron removed from heme leaving biliverdin
 - To transport proteins (*transferrin*)
 - To storage proteins (*ferritin* and *hemosiderin*)
Red Blood Cells

- Breakdown of Biliverdin
 - Biliverdin (green) is converted to **bilirubin** (yellow)
 - Bilirubin is:
 - excreted by liver (bile)
 - **jaundice** is caused by bilirubin buildup
 - converted by intestinal bacteria to **urobilins** and **stercobilins**
Red Blood Cells

Figure 19–5 Recycling of Red Blood Cell Components
Red Blood Cells

- RBC Production
 - Erythropoiesis
 - Occurs only in myeloid tissue (red bone marrow) in adults
 - Stem cells mature to become RBCs
 - Hemocytoblasts
 - Stem cells in myeloid tissue divide to produce
 - Myeloid stem cells: become RBCs, some WBCs
 - Lymphoid stem cells: become lymphocytes
Red Blood Cells

- Stages of RBC Maturation
 - Myeloid stem cell
 - Proerythroblast
 - Erythroblasts
 - Reticulocyte
 - Mature RBC
Figure 19–6 Stages of RBC Maturation
Red Blood Cells

- Regulation of Erythropoiesis
 - Building red blood cells requires
 - Amino acids
 - Iron
 - Vitamins B\textsubscript{12}, B\textsubscript{6}, and folic acid:
 - pernicious anemia
 - low RBC production
 - due to unavailability of vitamin B\textsubscript{12}
Red Blood Cells

TABLE 19–1 RBC Tests and Related Terminology

<table>
<thead>
<tr>
<th>Test</th>
<th>Determines</th>
<th>Terms Associated with Abnormal Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematocrit (Hct)</td>
<td>Percentage of formed elements in whole blood</td>
<td>Polycythemia (may reflect erythrocytosis or leukocytosis)</td>
</tr>
<tr>
<td></td>
<td>Normal = 37–54%</td>
<td>Anemia</td>
</tr>
<tr>
<td>Reticulocyte count (Retic.)</td>
<td>Percentage of circulating reticulocytes</td>
<td>Reticulocytosis</td>
</tr>
<tr>
<td></td>
<td>Normal = 0.8%</td>
<td></td>
</tr>
<tr>
<td>Hemoglobin concentration (Hb)</td>
<td>Concentration of hemoglobin in blood</td>
<td>Anemia</td>
</tr>
<tr>
<td></td>
<td>Normal = 12–18 g/dL</td>
<td></td>
</tr>
<tr>
<td>RBC count</td>
<td>Number of RBCs per μL of whole blood</td>
<td>Erythrocytosis/polycythemia</td>
</tr>
<tr>
<td></td>
<td>Normal = 4.2–6.3 million/μL</td>
<td>Anemia</td>
</tr>
<tr>
<td>Mean corpuscular volume (MCV)</td>
<td>Average volume of single RBC</td>
<td>Macrocytic</td>
</tr>
<tr>
<td></td>
<td>Normal = 82–101 μm³ (normocytic)</td>
<td></td>
</tr>
<tr>
<td>Mean corpuscular hemoglobin concentration (MCHC)</td>
<td>Average amount of Hb in one RBC</td>
<td>Hyperchromic</td>
</tr>
<tr>
<td></td>
<td>Normal = 27–34 pg/μL (normochromic)</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Red Blood Cells

- Stimulating Hormones
 - Erythropoietin (EPO)
 - Also called *erythropoiesis*-stimulating hormone
 - Secreted when oxygen in peripheral tissues is low (hypoxia)
 - Due to disease or high altitude
Blood Typing

- Are cell surface proteins that identify cells to immune system
- Normal cells are ignored and foreign cells attacked

- Blood types
 - Are genetically determined
 - By presence or absence of RBC surface antigens A, B, Rh (or D)
Blood Typing

- Four Basic Blood Types
 - A (surface antigen A)
 - B (surface antigen B)
 - AB (antigens A and B)
 - O (neither A nor B)
Blood Typing

Figure 19–7a Blood Types and Cross-Reactions
Blood Typing

- Agglutinogens
 - Antigens on surface of RBCs
 - Screened by immune system
 - Plasma antibodies attack and agglutinate (clump) foreign antigens
Blood Typing

- Blood Plasma Antibodies
 - Type A
 - Type B antibodies
 - Type B
 - Type A antibodies
 - Type O
 - Both A and B antibodies
 - Type AB
 - Neither A nor B antibodies
Blood Typing

- The Rh Factor
 - Also called D antigen
 - Either Rh positive (Rh\(^+\)) or Rh negative (Rh\(^-\))
 - Only *sensitized* Rh\(^-\) blood has anti-Rh antibodies
Figure 19–9 Rh Factors and Pregnancy
Figure 19–9 Rh Factors and Pregnancy
Blood Typing

- Cross-Reactions in Transfusions
 - Also called transfusion reaction
 - Plasma antibody meets its specific surface antigen
 - Blood will agglutinate and hemolyze
 - Occur if donor and recipient blood types not compatible
Blood Typing

Figure 19–7b Blood Types and Cross-Reactions
Blood Typing

- Cross-Match Testing for Transfusion Compatibility
 - Performed on donor and recipient blood for compatibility
 - Without cross-match, type O⁻ is universal donor
Blood Typing

Figure 19–8 Blood Type Testing
Blood Typing

TABLE 19–2 Differences in Blood Group Distribution

<table>
<thead>
<tr>
<th>Population</th>
<th>O</th>
<th>A</th>
<th>B</th>
<th>AB</th>
<th>Rh⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. (AVERAGE)</td>
<td>46</td>
<td>40</td>
<td>10</td>
<td>4</td>
<td>85</td>
</tr>
<tr>
<td>African American</td>
<td>49</td>
<td>27</td>
<td>20</td>
<td>4</td>
<td>95</td>
</tr>
<tr>
<td>Caucasian</td>
<td>45</td>
<td>40</td>
<td>11</td>
<td>4</td>
<td>85</td>
</tr>
<tr>
<td>Chinese American</td>
<td>42</td>
<td>27</td>
<td>25</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>Filipino American</td>
<td>44</td>
<td>22</td>
<td>29</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>Hawaiian</td>
<td>46</td>
<td>46</td>
<td>5</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>Japanese American</td>
<td>31</td>
<td>39</td>
<td>21</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Korean American</td>
<td>32</td>
<td>28</td>
<td>30</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>NATIVE NORTH AMERICAN</td>
<td>79</td>
<td>16</td>
<td>4</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>NATIVE SOUTH AMERICAN</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>AUSTRALIAN ABORIGINE</td>
<td>44</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>
White Blood Cells

- Also called leukocytes
- Do not have hemoglobin
- Have nuclei and other organelles
- WBC functions
 - Defend against pathogens
 - Remove toxins and wastes
 - Attack abnormal cells
White Blood Cells

- WBC Circulation and Movement
 - Most WBCs in
 - Connective tissue proper
 - Lymphoid system organs
 - Small numbers in blood
 - 5000 to 10,000 per microliter
White Blood Cells

WBC Circulation and Movement

Characteristics of circulating WBCs

- Can migrate out of bloodstream
- Have amoeboid movement
- Attracted to chemical stimuli (positive chemotaxis)
- Some are phagocytic:
 - neutrophils, eosinophils, and monocytes
White Blood Cells

- Types of WBCs
 - Neutrophils
 - Eosinophils
 - Basophils
 - Monocytes
 - Lymphocytes
White Blood Cells

(a) Neutrophil
(b) Eosinophil
(c) Basophil

Figure 19–10a-c White Blood Cells
Figure 19–10d-e White Blood Cells
White Blood Cells

- Neutrophils
 - Also called polymorphonuclear leukocytes
 - 50–70% of circulating WBCs
 - Pale cytoplasm granules with
 - Lysosomal enzymes
 - Bactericides (hydrogen peroxide and superoxide)
White Blood Cells

- Neutrophil Action
 - Very active, first to attack bacteria
 - Engulf pathogens
 - Digest pathogens
 - Degranulation:
 - removing granules from cytoplasm
 - *defensins* (peptides from lysosomes) attack pathogen membranes
 - Release prostaglandins and leukotrienes
 - Form pus
White Blood Cells

- **Eosinophils**
 - Also called *acidophils*
 - 2–4% of circulating WBCs
 - Attack large parasites
 - Excrete toxic compounds
 - Nitric oxide
 - Cytotoxic enzymes
 - Are sensitive to allergens
 - Control inflammation with enzymes that counteract inflammatory effects of neutrophils and mast cells
White Blood Cells

- Basophils
 - Are less than 1% of circulating WBCs
 - Are small
 - Accumulate in damaged tissue
 - Release histamine
 - Dilates blood vessels
 - Release heparin
 - Prevents blood clotting
White Blood Cells

- **Monocytes**
 - 2–8% of circulating WBCs
 - Are large and spherical
 - Enter peripheral tissues and become macrophages
 - Engulf large particles and pathogens
 - Secrete substances that attract immune system cells and fibrocytes to injured area
White Blood Cells

- Lymphocytes
 - 20–30% of circulating WBCs
 - Are larger than RBCs
 - Migrate in and out of blood
 - Mostly in connective tissues and lymphoid organs
 - Are part of the body’s specific defense system
White Blood Cells

- Three Classes of Lymphocytes
 - T cells
 - Cell-mediated immunity
 - Attack foreign cells directly
 - B cells
 - Humoral immunity
 - Differentiate into plasma cells
 - Synthesize antibodies
 - Natural killer (NK) cells
 - Detect and destroy abnormal tissue cells (cancers)
White Blood Cells

- The Differential Count and Changes in WBC Profiles
 - Detects changes in WBC populations
 - Infections, inflammation, and allergic reactions
White Blood Cells

- WBC Disorders
 - Leukopenia
 - Abnormally low WBC count
 - Leukocytosis
 - Abnormally high WBC count
 - Leukemia
 - Extremely high WBC count
White Blood Cells

- **WBC Production**
 - All blood cells originate from hemocytoblasts
 - Which produce myeloid stem cells and lymphoid stem cells
 - **Myeloid Stem Cells**
 - Differentiate into *progenitor cells*, which produce all WBCs except lymphocytes
 - **Lymphoid Stem Cells**
 - *Lymphopoiesis*: the production of lymphocytes
White Blood Cells

- **WBC Development**
 - WBCs, except monocytes
 - Develop fully in bone marrow
 - Monocytes
 - Develop into macrophages in peripheral tissues
White Blood Cells

- Regulation of WBC Production
- Colony-stimulating factors = CSFs
 - Hormones that regulate blood cell populations:
 1. **M-CSF** stimulates monocyte production
 2. **G-CSF** stimulates granulocyte (neutrophils, eosinophils, and basophils) production
 3. **GM-CSF** stimulates granulocyte and monocyte production
 4. **Multi-CSF** accelerates production of granulocytes, monocytes, platelets, and RBCs
White Blood Cells

<table>
<thead>
<tr>
<th>Cell</th>
<th>Abundance (average number per µL)</th>
<th>Appearance in a Stained Blood Smear</th>
<th>Functions</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED BLOOD CELLS</td>
<td>5.2 million (range: 4.4–6.0 million)</td>
<td>Flattened, circular cell; no nucleus, mitochondria, or ribosomes; red</td>
<td>Transport oxygen from lungs to tissues and carbon dioxide from tissues to lungs</td>
<td>Remain in bloodstream; 120-day life expectancy; amino acids and iron recycled; produced in bone marrow</td>
</tr>
</tbody>
</table>
White Blood Cells

SUMMARY TABLE 19–3 Formed Elements of the Blood

<table>
<thead>
<tr>
<th>Cell</th>
<th>Abundance (average number per µL)</th>
<th>Appearance in a Stained Blood Smear</th>
<th>Functions</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHITE BLOOD CELLS</td>
<td>7000 (range: 5000–10,000)</td>
<td>Round cell; nucleus lobed and may resemble a string of beads; cytoplasm contains large, pale inclusions</td>
<td>Phagocytic: Engulf pathogens or debris in tissues, release cytotoxic enzymes and chemicals</td>
<td>Move into tissues after several hours; may survive minutes to days, depending on tissue activity; produced in bone marrow</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>4150 (range: 1800–7300) Differential count: 50–70%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eosinophils</td>
<td>165 (range: 0–700) Differential count: 2–4%</td>
<td>Round cell; nucleus generally in two lobes; cytoplasm contains large granules that generally stain bright red</td>
<td>Phagocytic: Engulf antibody-labeled materials, release cytotoxic enzymes, reduce inflammation; increase in allergic and parasitic situations</td>
<td>Move into tissues after several hours; survive minutes to days, depending on tissue activity; produced in bone marrow</td>
</tr>
<tr>
<td>Basophils</td>
<td>44 (range: 0–150) Differential count: <1%</td>
<td>Round cell; nucleus generally cannot be seen through dense, blue-stained granules in cytoplasm</td>
<td>Enter damaged tissues and release histamine and other chemicals that promote inflammation</td>
<td>Survival time unknown; assist mast cells of tissues in producing inflammation; produced in bone marrow</td>
</tr>
</tbody>
</table>
White Blood Cells

<table>
<thead>
<tr>
<th>SUMMARY TABLE 19–3</th>
<th>Formed Elements of the Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell</td>
<td>Abundance (average number per µL)</td>
</tr>
<tr>
<td>Monocytes</td>
<td>456 (range: 200–950) Differential count: 2–8%</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>2185 (range: 1500–4000) Differential count: 20–30%</td>
</tr>
</tbody>
</table>
White Blood Cells

<table>
<thead>
<tr>
<th>Cell</th>
<th>Abundance (average number per µL)</th>
<th>Appearance in a Stained Blood Smear</th>
<th>Functions</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLATELETS</td>
<td>350,000 (range: 150,000–500,000)</td>
<td>Round to spindle-shaped cytoplasmic fragment; contain enzymes, proenzymes, actin, and myosin; no nucleus</td>
<td>Hemostasis: Clump together and stick to vessel wall (platelet phase); activate intrinsic pathway of coagulation phase</td>
<td>Remain in bloodstream or in vascular organs; remain intact for 7–12 days; produced by megakaryocytes in bone marrow</td>
</tr>
</tbody>
</table>
White Blood Cells

Figure 19–11 The Origins and Differentiation of Formed Elements
Platelets

- Cell fragments involved in human clotting system
 - Nonmammalian vertebrates have thrombocytes (nucleated cells)
- Circulate for 9–12 days
- Are removed by spleen
- 2/3 are reserved for emergencies
Platelets

- **Platelet Counts**
 - 150,000 to 500,000 per microliter
- **Thrombocytopenia**
 - Abnormally low platelet count
- **Thrombocytosis**
 - Abnormally high platelet count
Three Functions of Platelets:

1. Release important clotting chemicals
2. Temporarily patch damaged vessel walls
3. Actively contract tissue after clot formation
Platelets

- **Platelet Production**
 - Also called *thrombocytopoiesis*
 - Occurs in bone marrow
 - **Megakaryocytes**
 - Giant cells in bone marrow
 - Manufacture platelets from cytoplasm
Platelets

- Platelet Production
 - Hormonal controls
 - Thrombopoietin (TPO)
 - Interleukin-6 (IL-6)
 - Multi-CSF
Hemostasis

- Hemostasis is the cessation of bleeding
- Consists of three phases
 - Vascular phase
 - Platelet phase
 - Coagulation phase
Hemostasis

- The Vascular Phase
 - A cut triggers vascular spasm that lasts 30 minutes
 - Three steps of the vascular phase
 - Endothelial cells contract:
 - expose basal lamina to bloodstream
 - Endothelial cells release:
 - chemical factors: ADP, tissue factor, and prostacyclin
 - local hormones: endothelins
 - stimulate smooth muscle contraction and cell division
 - Endothelial plasma membranes become “sticky”:
 - seal off blood flow
Hemostasis

The Platelet Phase

- Begins within 15 seconds after injury

 - **Platelet adhesion** (attachment)
 - To sticky endothelial surfaces
 - To basal laminae
 - To exposed collagen fibers

- Platelet aggregation (stick together)
 - Forms **platelet plug**
 - Closes small breaks
Hemostasis

- **Platelet Phase**
 - Activated platelets release clotting compounds
 - Adenosine diphosphate (ADP)
 - Thromboxane A$_2$ and serotonin
 - Clotting factors
 - Platelet-derived growth factor (PDGF)
 - Calcium ions
Hemostasis

- Factors that limit the growth of the platelet plug
 - **Prostacyclin**, released by endothelial cells, inhibits platelet aggregation
 - Inhibitory compounds released by other white blood cells
 - Circulating enzymes break down ADP
 - Negative (inhibitory) feedback: from serotonin
 - Development of blood clot isolates area
Hemostasis

Figure 19–12 The Vascular and Platelet Phases of Hemostasis.
Hemostasis

- The Coagulation Phase
 - Begins 30 seconds or more after the injury
 - Blood clotting (coagulation)
 - Cascade reactions:
 - chain reactions of enzymes and proenzymes
 - form three pathways
 - convert circulating fibrinogen into insoluble fibrin
Hemostasis

- Clotting Factors
 - Also called procoagulants
 - Proteins or ions in plasma
 - Required for normal clotting
Hemostasis

TABLE 19–4 Clotting Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Structure</th>
<th>Name</th>
<th>Source</th>
<th>Concentration in Plasma (μg/mL)</th>
<th>Pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Protein</td>
<td>Fibrinogen</td>
<td>Liver</td>
<td>2500–3500</td>
<td>Common</td>
</tr>
<tr>
<td>II</td>
<td>Protein</td>
<td>Prothrombin</td>
<td>Liver, requires vitamin K</td>
<td>100</td>
<td>Common</td>
</tr>
<tr>
<td>III</td>
<td>Lipoprotein</td>
<td>Tissue factor (TF)</td>
<td>Damaged tissue, activated platelets</td>
<td>0</td>
<td>Extrinsic</td>
</tr>
<tr>
<td>IV</td>
<td>Ion</td>
<td>Calcium ions</td>
<td>Bone, diet, platelets</td>
<td>100</td>
<td>Entire process</td>
</tr>
<tr>
<td>V</td>
<td>Protein</td>
<td>Proaccelerin</td>
<td>Liver, platelets</td>
<td>10</td>
<td>Extrinsic and intrinsic</td>
</tr>
<tr>
<td>VI</td>
<td>(No longer used)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>Protein</td>
<td>Proconvertin</td>
<td>Liver, requires vitamin K</td>
<td>0.5</td>
<td>Extrinsic</td>
</tr>
<tr>
<td>VIII</td>
<td>Protein factor (AHF)</td>
<td>Antihemophilic</td>
<td>Platelets, endothelial cells</td>
<td>15</td>
<td>Intrinsic</td>
</tr>
<tr>
<td>IX</td>
<td>Protein factor</td>
<td>Plasma thromboplastin</td>
<td>Liver, requires vitamin K</td>
<td>3</td>
<td>Intrinsic</td>
</tr>
<tr>
<td>X</td>
<td>Protein</td>
<td>Stuart–Prower factor</td>
<td>Liver, requires vitamin K</td>
<td>10</td>
<td>Extrinsic and intrinsic</td>
</tr>
<tr>
<td>XI</td>
<td>Protein antecedent (PTA)</td>
<td>Plasma thromboplastin</td>
<td>Liver</td>
<td><5</td>
<td>Intrinsic</td>
</tr>
<tr>
<td>XII</td>
<td>Protein</td>
<td>Hageman factor</td>
<td>Liver</td>
<td><5</td>
<td>Intrinsic; also activates plasmin</td>
</tr>
<tr>
<td>XIII</td>
<td>Protein factor (FSF)</td>
<td>Fibrin-stabilizing</td>
<td>Liver, platelets</td>
<td>20</td>
<td>Stabilizes fibrin, slows fibrinolysis</td>
</tr>
</tbody>
</table>
Hemostasis

- Three Coagulation Pathways
 - **Extrinsic pathway**
 - Begins in the vessel wall
 - Outside bloodstream
 - **Intrinsic pathway**
 - Begins with circulating proenzymes
 - Within bloodstream
 - **Common pathway**
 - Where intrinsic and extrinsic pathways converge
Hemostasis

- The Extrinsic Pathway
 - Damaged cells release tissue factor (TF)
 - TF + other compounds = enzyme complex
 - Activates Factor X
Hemostasis

- The Intrinsic Pathway
 - Activation of enzymes by collagen
 - Platelets release factors (e.g., PF–3)
 - Series of reactions activates Factor X
Hemostasis

- The Common Pathway
 - Forms enzyme prothrombinase
 - Converts prothrombin to thrombin
 - Thrombin converts fibrinogen to fibrin
Hemostasis

- Stimulates formation of tissue factor
 - Stimulates release of PF-3
 - Forms positive feedback loop (intrinsic and extrinsic)
 - Accelerates clotting
Figure 19–13a The Coagulation Phase of Hemostasis
Hemostasis

Figure 19–13b The Coagulation Phase of Hemostasis
Hemostasis

- Clotting: Area Restriction
 - Anticoagulants (plasma proteins)
 - Antithrombin-III
 - Alpha-2-macroglobulin
 - Heparin
 - Protein C (activated by thrombomodulin)
 - Prostacyclin
Hemostasis

- Calcium Ions, Vitamin K, and Blood Clotting
 - Calcium ions (Ca$^{2+}$) and vitamin K are both essential to the clotting process
Hemostasis

- **Clot Retraction**
 - After clot has formed
 - Platelets contract and pull torn area together
 - Takes 30–60 minutes
Fibrinolysis

- Slow process of dissolving clot
 - Thrombin and tissue plasminogen activator (t-PA):
 - activate plasminogen

- Plasminogen produces plasmin
 - Digests fibrin strands