(1.) Reproduction

- Methods of Reproduction
 - Sexual reproduction
 - Meiosis, gamete formation, and fertilization
 - Offspring show genetic variation
 - Asexual reproduction
 - Single parent produces offspring
 - Offspring are genetically identical

- Asexual Reproduction
 - Spontaneous fission
 - Animals split or cut in two can regenerate new tissues to become two clones
 - Propagation
 - Plant cuttings or broken-off segments (vegetative propagules) propagate new clones
 - Parthenogenesis
 - Ovum develops without fertilization by male
 - Environmentally controlled/induced
 - Budding
 - Individuals bud off clones
 - Rare in animals (e.g. sea anemones, sponges)
 - Common in plants (rhizomes or “runners”)

- Types of Sexual Reproduction
 - Separate male and female individuals
 - Most animals
 - Dioecious plant species have male and female flowers on separate individuals
 - e.g. holly trees, stinging nettle
 - Simultaneous Hermaphrodites
 - Animals with both male and female organs (e.g. earthworms and snails)
 - Plants with bisexual flowers containing both stamen and pistil. e.g. lilies
 - Monoecious plants have male and female flowers on the same individual;
 - Sequential Hermaphrodites
 - Animals and plants that change sex due to age or environmental cues such as population sex ratio
 - Protogynous - start as females
 - Protandrous start as males

- Plant Life Cycle Origins
 - Terrestrial plants evolved from green algae
 - Ancestral plants life cycle is similar to that of green algae
 - Other similarities:
 - Same pigments, chemical make-up, genetics
Evolutionary Trend
 o Evolution of Plants
 o Nonvascular plants
 ▪ Bryophytes (mosses, hornworts)
 o Vascular plants
 ▪ Seedless (ferns, horsetails)
 ▪ Seed-bearing (conifers, flowering plants)
 o Seed-Bearing Vascular Plants
 ▪ Gymnosperms arose first
 ▪ Cycads, Ginkgos, Gnetophytes, Conifers
 ▪ Angiosperms arose later
 ▪ Monocots, Dicots

Two Types of Spores
 o Microspores
 ▪ Develop into pollen grains
 ▪ Immature male gametophyte
 o Megaspores
 ▪ Develop on sporophyte in ovule
 ▪ Female gametophyte
 o Pollination

Gymnosperms
 o Plants with “naked seeds”
 o Seeds don’t form inside an ovary

Pine Cones
 o Clusters of woody scales bearing ovules
 o Megaspores develop into female gametophyte
 o Male cones
 ▪ Microspores become pollen grains are not woody

Life Cycles
 o Senescence:
 ▪ Phase from maturity to death of plant or parts of plant
 o Dormancy:
 ▪ Seasonal response to environmental change
 ▪ Growth stops, metabolism idles
 ▪ Ends with return to favorable conditions
 o Vernalization:
 ▪ Low temperature stimulation of flowering

Animal Reproduction and Dispersal
 o External Fertilization
 ▪ Sessile aquatic organisms release gametes into water (broadcast spawning)
 ▪ No energy spent on finding and competing for partner
 ▪ Energy spent on copious gamete production
 ▪ High number of offspring, low survival rate
 o Internal Fertilization
- Common to many types of animals (aquatic, terrestrial, invertebrates and vertebrates)
- More effective fertilization
- Fewer offspring, higher survival rate

❖ Bearing Offspring:
 - Oviparity (Egg laying)
 - Ovuliparity: fertilization is external (arthropods, fishes, most frogs)
 - Oviparity: fertilization is internal, the female lays zygotes as eggs with important vitellus (typically birds)
 - Ovo-viviparity: oviparity with retention of zygotes in the female’s body or in the male’s body, but there are no trophic interactions between zygote and parents.
 - In sea horse, zygotes are retained in the male’s ventral "marsupium".
 - In the frog Rhinoderma darwinii, the zygotes develop in the vocal sac.
 - In the frog Rheobatrachus, zygotes develop in the stomach.
 - Viviparity (Live Bearing)
 - Histotrophic viviparity: the zygotes develop in the female’s oviducts, but find their nutrients by oophagy or adelphophagy (intra-uterine cannibalism in some sharks)
 - Hemotrophic viviparity: nutrients are provided by the female, often through some form of placenta as in most mammals

❖ Embryonic Development
 - Direct development
 - Individuals develop into adult-like juveniles
 - Indirect development
 - Individuals go through several larval stages before attaining adult form

❖ Cost of Sexual Reproduction
 - Specialized cells and structures must be formed
 - Special courtship and parental behaviors can be costly
 - Nurturing developing offspring, either in egg or body, requires resources (usually from mother)

❖ Reproductive Costs
 - Organisms Budget Time and Energy to Reproduction
 - Reproductive effort - time and energy allocated to reproduction
 - The more energy an organism allocates to reproduction, the less it can allocate for growth and maintenance
 - Terrestrial isopod
 - Douglas-fir tree
 - The amount of energy invested in reproduction varies for different individuals
 - Investment in reproduction includes production, care, and nourishment of offspring
An individual’s fitness is determined by the number of offspring that survive to reproduce

- Trade-offs
 - Number and size of offspring
 - Seed size and number of seeds produced per plant
 - Seed size and probability of seedling survival
 - Expected reproductive success in wet versus dry environments

- Species Differ in the Timing of Reproduction
 - Semelparity is the mode of reproduction in which an organism expends all of its energy in one suicidal act of reproduction
 - The life span of semelparous species varies from several days (some insects) to decades (cicada, bamboo)
 - Iteroparity is the mode of reproduction in which an organism produces fewer young at one time and repeats reproduction throughout its lifetime
 - There are trade-offs associated with early versus late reproduction
 - Vertebrates, perennial plants, shrubs, and trees

- Parental Investment Depends on the Number and Size of Young
 - There is an inverse relationship between the number of offspring produced and the parental investment that each receives
 - Large numbers of offspring
 - Are produced by organisms that inhabit disturbed sites, unpredictable environments, or environments where parental care is impossible
 - Increase the chances that some young will survive
 - Parents that produce few young can expend more energy on each young
 - Altricial young are born or hatched in a helpless condition and require considerable parental care (e.g., mice)
 - Precocial young emerge from the womb ready to move about and forage for themselves (e.g., ungulate mammals)
 - The degree of parental care varies widely
 - Parental care is best developed among social insects (e.g., bees)

- Fecundity Depends on Age and Size
 - The number of offspring produced varies with the age and size of the parent
 - Many plants and ectothermic (coldblooded) animals exhibit indeterminate growth and do not have a characteristic adult size
 - These continue to grow throughout their adult life
 - Perennial plants delay flowering until they reach a sufficiently large size
 - Many biennial plants delay flowering until environmental conditions become more favorable
 - The difference in annual plant size is related to the number of seeds produced
 - Production of offspring increases with fish size (which increases with age)
 - The number of eggs produced by loggerhead sea turtles is constrained by body size
- There is a positive relationship between body size and number of young produced by female big-handed crabs

- **Environmental Conditions Influence the Evolution of Life History Characteristics**
 - Two habitat types relating to variability in time
 - Those that are variable in time and are short-lived
 - Those that are relatively stable, long-lived, and constant
 - This dichotomy was used by R. MacArthur, E.O. Wilson, and E. Pianka to develop the concept of r- and K-selection
 - Species adapted to variable or stable environments will differ in life history traits
 - r-strategists are typically short-lived and inhabit unstable/unpredictable environments that can cause catastrophic mortality
 - High reproductive rates, rapid development, small body size, large number of offspring, minimal parental care
 - Resources are rarely limiting
 - K-strategists are competitive species with stable populations of long-lived individuals
 - Delayed and repeated reproduction, larger body size, slower development, produce few young
 - Mortality is related to density

(2.) **Natural Selection**

- **Darwin’s four postulates:**
 - Individuals within species are variable in traits
 - Some of these variations (traits) are passed on to offspring (that is, these traits are heritable)
 - In every generation, more offspring are produced than can survive due to limits of the environment
 - Individuals with “better” variations (traits) have greater survival and reproduction. They are *naturally selected*.

- **Natural Selection (Darwin’s Conclusion)**
 - Natural selection for various traits among individuals of a population affects which individuals survive and reproduce in each generation
 - Process results in adaptation to the environment (increases fitness)

- **Adaptation**
 - Some heritable aspect of form, function, or behavior that improves the odds for surviving and reproducing
 - Environment specific
 - Outcome of natural selection

- **Populations Evolve**
 - Biological evolution changes populations, not individuals
 - Traits in a population vary among individuals
 - Evolution: change in the frequency of traits

- **The Gene Pool**
 - All the genes in a population
 - Genetic resource that is shared (in theory) by all members of population
Variation in Phenotype
- Each gene in gene pool may have two or more alleles
- Individuals inherit different allele combinations leading to variation in phenotype
- Offspring inherit genes, not phenotypes

What Determines Alleles in a New Individual?
- Mutation
- Crossing over at meiosis I
- Independent assortment
- Fertilization
- Change in chromosome number or structure

Genetic Equilibrium
- Allele frequencies at a locus are not changing
- Population is not evolving
- Five Conditions of Genetic Equilibrium
 - No mutation
 - Random mating
 - Gene doesn’t affect survival or reproduction
 - Large population
 - No immigration/emigration

(3.) Microevolution
- Microevolutionary Processes
 - Drive a population away from genetic equilibrium
 - Small-scale changes in allele frequencies brought about by
 - Natural selection
 - Gene flow
 - Genetic drift

Gene Mutations
- Infrequent but inevitable
- Each gene has own mutation rate
- Lethal mutations
- Neutral mutations
- Advantageous mutations

Polymorphism
- Variability in form within or among populations of same species

Results of Natural Selection
- Three possible outcomes:
 - A shift in the range of values for a given trait in some direction
 - Stabilization of an existing range of values
 - Disruption of an existing range of values
Directional Selection
- Allele frequencies shift in consistent direction over time
 - Speed in grasshoppers

Pinpointing the Target of Selection
- Populations of rock pocket mice have fur that matches the rocks on which they live
 - Black basalt: dark fur
 - Tawny granite: light fur
- DNA comparisons show that the two populations differ in Mclr gene sequence

Pesticide Resistance
- Pesticides kill susceptible insects
- Resistant insects survive and reproduce
- If resistance has heritable basis, it becomes more common with each generation

Antibiotic Resistance
- Antibiotics first came into use in the 1940s
- Overuse has led to increase in resistant forms
- Most susceptible cells died out, while resistant forms multiplied

Stabilizing Selection
- Intermediate forms are favored and extremes are eliminated
 - Human Birth Weight

Disruptive Selection
- Happens when forms at both ends of the range of variation are favored
- Intermediate forms are selected against
 - African Finches
 - Selection favors birds with very large or very small bill
 - Birds with intermediate-sized bill are less effective feeders

Sexual Selection
- Selection favors certain secondary sexual characteristics
- Through nonrandom mating, alleles for preferred traits increase
- Leads to increased sexual dimorphism
 - Sexual selection common in birds

- **Balanced Polymorphism**
 - Polymorphism: “having many forms”
 - Occurs when two or more alleles are maintained at frequencies greater than 1 percent
 - Sickle-Cell Trait: Heterozygote Advantage
 - Allele HbS causes sickle-cell anemia when heterozygous
 - Heterozygotes are more resistant to malaria than homozygotes

- **Genetic Drift**
 - Random change in allele frequencies brought about by chance
 - Effect is most pronounced in small populations
 - Sampling error: fewer times an event occurs, greater the variance in outcome
 - Genetic Drift: Small Populations
 - Frequency of b+ allele
 - Genetic Drift: Large Populations
 - Frequency of b+ allele

- **Bottleneck**
 - A severe reduction in population size
 - Causes pronounced drift
 - Example
 - Elephant seal population hunted down to just 20 individuals
 - Population rebounded to 30,000
 - Electrophoresis revealed there is now no allele variation at 24 genes

- **Founder Effect**
 - Effect of drift when a small number of individuals starts a new population
 - By chance, allele frequencies of founders may not be same as those in original population
 - Effect is pronounced on isolated islands

- **Inbreeding**
 - Nonrandom mating between related individuals
 - Leads to increased homozygosity
 - Can lower fitness when deleterious recessive alleles are expressed

- **Gene Flow**
 - Physical flow of alleles into a population
 - Tends to keep the gene pools of populations similar
Counters the differences that arise from mutation, natural selection, and genetic drift

- Gene Flow Example
 - Blue jay carries acorn between oak populations

Evolutionary Patterns, Rates, and Trends

- **Macroevo1ution**
 - Major patterns and trends among lineages
 - Rates of change in geologic time

- **Comparative Morphology**
 - Comparing body forms and structures of major lineages
 - Guiding principle:
 - When it comes to introducing change in morphology, evolution tends to follow the path of least resistance
 - **Morphological Divergence**
 - Change from body form of a common ancestor
 - Produces homologous structures
 - **Morphological Convergence**
 - Individuals of different lineages evolve in similar ways under similar environmental pressures
 - Produces analogous structures that serve similar functions

- **Comparative Development**
 - Each animal or plant proceeds through a series of changes in form
 - Similarities in these stages may be clues to evolutionary relationships
 - Mutations that disrupt a key stage of development are selected against
 - **Altering Developmental Programs**
 - Some mutations shift a step in a way that natural selection favors
 - Small changes at key steps may bring about major differences

- **Molecular Evidence**
 - Biochemical traits shared by species show how closely they are related
 - Can compare DNA, RNA, or proteins
 - **Comparing Proteins**
 - Compare amino acid sequence of proteins produced by the same gene
 - Human cytochrome c (a protein)
 - Identical amino acids in chimpanzee protein
 - Chicken protein differs by 18 amino acids
 - Yeast protein differs by 56
 - Sequence Conservation
 - Cytochrome c functions in electron transport
 - Deficits in this vital protein would be lethal
 - Some sequences are identical in wheat, yeast, and primates
 - **Nucleic Acid Comparison**
 - Use single-stranded DNA or RNA
 - Hybrid molecules are created, then heated
 - The more heat required to break hybrid, the more closely related the species
 - **Molecular Clock**
• Assumption: “Ticks” (neutral mutations) occur at a constant rate
• Count the number of differences to estimate time of divergence

❖ Biological Species Concept
 ➢ “Species are groups of interbreeding natural populations that are reproductively isolated from other such groups.” -Ernst Mayr

❖ Variable Morphology
 ➢ Reproductive isolation can cause genetic divergence leading to new species

❖ Genetic Divergence
 ➢ Gradual accumulation of differences in the gene pools of populations
 ➢ Natural selection, genetic drift, and mutation can contribute to divergence
 ➢ Gene flow counters divergence

❖ Reproductive Isolation
 ➢ Cornerstone of the biological species concept
 ➢ Speciation is the attainment of reproductive isolation
 ➢ Reproductive isolation arises as a by-product of genetic change
 • Reproductive Isolating Mechanisms
 • Prevent pollination or mating
 • Block fertilization or embryonic development
 • Cause offspring to be weak or sterile
 ➢ Prezygotic Isolation
 • Mechanical isolation
 • Wasp and zebra orchid
 • Temporal isolation
 • Cicada
 • Behavioral isolation
 • Albatrosses
 • Ecological isolation
 • Populations residing in different ecosystems
 • Gametic mortality
 • Mutation driven gamete incompetence or incompatibility
 ➢ Postzygotic Mechanisms
 • Early death
 • Sterility
 • Low survival rates
Models for Speciation

- **Allopatric Speciation**
 - Speciation in geographically isolated populations
 - Some sort of barrier arises and prevents gene flow
 - Effectiveness of barrier varies with species
 - Extensive Divergence Prevents Inbreeding
 - Species separated by geographic barriers will diverge genetically
 - If divergence is great enough it will prevent inbreeding even if the barrier later disappears
 - Archipelagos
 - Island chains some distance from continents
 - Galapagos Islands
 - Hawaiian Islands
 - Colonization of islands followed by genetic divergence sets the stage for speciation
 - Adaptive radiations:
 - Honeycreepers: in absence of other bird species, they radiated to fill numerous niches

- **Speciation without a Barrier**
 - **Sympatric speciation**
 - Species forms within the home range of the parent species
 - Sympatric Speciation in African Cichlids
 - Studies of fish species in two lakes
 - Species in each lake are most likely descended from single ancestor
 - No barriers within either lake
 - Feeding preferences localize species in different parts of lake
 - **Speciation by Polyploidy**
 - Change in chromosome number
 - (3n, 4n, etc.)
 - Offspring with altered chromosome number cannot breed with parent population
 - Common mechanism of speciation in flowering plants
 - **Parapatric speciation**
 - Neighboring populations become distinct species while maintaining contact along a common border